from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_results_directory
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
results_dir = default_results_directory()
# Parameters
results_dir = "./results/local/20220315T132911/"
results_dir = Path(results_dir)
reporting = HpMatchReporting(other_library="onnx", config="config.yml", log_scale=True, results_dir=results_dir)
reporting.make_report()
We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up
time scikit-learn / time onnx
. For instance, a speed-up of 2 means that onnx is twice as fast as scikit-learn for a given set of parameters and a given dataset.
onnx (1.11.0) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=brute
.
predict
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | accuracy_score_sklearn | mean_duration_onnx | std_duration_onnx | accuracy_score_onnx | speedup | std_speedup | sklearn_profiling | onnx_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | predict | 100000 | 1000 | 100 | 2.872 | 0.287 | 0.0 | 0.003 | -1 | 1 | 0.676 | 18.028 | 0.188 | 0.676 | 0.159 | 0.159 | Download | Download |
1 | predict | 100000 | 1 | 100 | 0.032 | 0.006 | 0.0 | 0.032 | -1 | 1 | 0.000 | 0.335 | 0.014 | 0.000 | 0.095 | 0.095 | Download | Download |
2 | predict | 100000 | 1000 | 100 | 3.563 | 0.068 | 0.0 | 0.004 | -1 | 5 | 0.743 | 18.304 | 0.054 | 0.743 | 0.195 | 0.195 | Download | Download |
3 | predict | 100000 | 1 | 100 | 0.030 | 0.002 | 0.0 | 0.030 | -1 | 5 | 1.000 | 0.337 | 0.010 | 1.000 | 0.089 | 0.089 | Download | Download |
4 | predict | 100000 | 1000 | 100 | 2.626 | 0.047 | 0.0 | 0.003 | 1 | 100 | 0.846 | 17.820 | 0.063 | 0.846 | 0.147 | 0.147 | Download | Download |
5 | predict | 100000 | 1 | 100 | 0.027 | 0.002 | 0.0 | 0.027 | 1 | 100 | 1.000 | 0.340 | 0.011 | 1.000 | 0.079 | 0.079 | Download | Download |
6 | predict | 100000 | 1000 | 100 | 3.373 | 0.081 | 0.0 | 0.003 | -1 | 100 | 0.846 | 17.583 | 0.239 | 0.846 | 0.192 | 0.192 | Download | Download |
7 | predict | 100000 | 1 | 100 | 0.030 | 0.006 | 0.0 | 0.030 | -1 | 100 | 1.000 | 0.350 | 0.009 | 1.000 | 0.084 | 0.084 | Download | Download |
8 | predict | 100000 | 1000 | 100 | 2.572 | 0.048 | 0.0 | 0.003 | 1 | 5 | 0.743 | 17.604 | 0.086 | 0.743 | 0.146 | 0.146 | Download | Download |
9 | predict | 100000 | 1 | 100 | 0.024 | 0.001 | 0.0 | 0.024 | 1 | 5 | 1.000 | 0.326 | 0.007 | 1.000 | 0.075 | 0.075 | Download | Download |
10 | predict | 100000 | 1000 | 100 | 1.711 | 0.030 | 0.0 | 0.002 | 1 | 1 | 0.676 | 17.815 | 0.020 | 0.676 | 0.096 | 0.096 | Download | Download |
11 | predict | 100000 | 1 | 100 | 0.027 | 0.004 | 0.0 | 0.027 | 1 | 1 | 0.000 | 0.348 | 0.010 | 0.000 | 0.078 | 0.079 | Download | Download |
12 | predict | 100000 | 1000 | 2 | 1.957 | 0.046 | 0.0 | 0.002 | -1 | 1 | 0.845 | 4.260 | 0.068 | 0.845 | 0.459 | 0.459 | Download | Download |
13 | predict | 100000 | 1 | 2 | 0.005 | 0.001 | 0.0 | 0.005 | -1 | 1 | 1.000 | 0.241 | 0.008 | 1.000 | 0.022 | 0.022 | Download | Download |
14 | predict | 100000 | 1000 | 2 | 2.921 | 0.075 | 0.0 | 0.003 | -1 | 5 | 0.883 | 4.292 | 0.066 | 0.883 | 0.680 | 0.681 | Download | Download |
15 | predict | 100000 | 1 | 2 | 0.008 | 0.002 | 0.0 | 0.008 | -1 | 5 | 1.000 | 0.254 | 0.011 | 1.000 | 0.030 | 0.030 | Download | Download |
16 | predict | 100000 | 1000 | 2 | 2.327 | 0.074 | 0.0 | 0.002 | 1 | 100 | 0.887 | 4.161 | 0.038 | 0.887 | 0.559 | 0.559 | Download | Download |
17 | predict | 100000 | 1 | 2 | 0.004 | 0.000 | 0.0 | 0.004 | 1 | 100 | 1.000 | 0.243 | 0.017 | 1.000 | 0.015 | 0.015 | Download | Download |
18 | predict | 100000 | 1000 | 2 | 3.012 | 0.064 | 0.0 | 0.003 | -1 | 100 | 0.887 | 4.294 | 0.116 | 0.887 | 0.701 | 0.702 | Download | Download |
19 | predict | 100000 | 1 | 2 | 0.007 | 0.002 | 0.0 | 0.007 | -1 | 100 | 1.000 | 0.248 | 0.007 | 1.000 | 0.028 | 0.028 | Download | Download |
20 | predict | 100000 | 1000 | 2 | 2.346 | 0.067 | 0.0 | 0.002 | 1 | 5 | 0.883 | 4.407 | 0.159 | 0.883 | 0.532 | 0.533 | Download | Download |
21 | predict | 100000 | 1 | 2 | 0.003 | 0.000 | 0.0 | 0.003 | 1 | 5 | 1.000 | 0.262 | 0.006 | 1.000 | 0.013 | 0.013 | Download | Download |
22 | predict | 100000 | 1000 | 2 | 1.390 | 0.014 | 0.0 | 0.001 | 1 | 1 | 0.845 | 4.485 | 0.075 | 0.845 | 0.310 | 0.310 | Download | Download |
23 | predict | 100000 | 1 | 2 | 0.002 | 0.000 | 0.0 | 0.002 | 1 | 1 | 1.000 | 0.260 | 0.010 | 1.000 | 0.009 | 0.009 | Download | Download |
Profiling traces can be visualized using Perfetto UI.
onnx (1.11.0) vs. scikit-learn (1.0.2)
All estimators share the following parameters: learning_rate=0.01
, n_iter_no_change=10.0
, max_leaf_nodes=100.0
, max_bins=255.0
, min_samples_leaf=100.0
, max_iter=300.0
.
predict
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | accuracy_score_sklearn | mean_duration_onnx | std_duration_onnx | accuracy_score_onnx | speedup | std_speedup | sklearn_profiling | onnx_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | predict | 100000 | 1000 | 100 | 0.191 | 0.003 | 0.004 | 0.0 | 0.795 | 0.601 | 0.026 | 0.795 | 0.318 | 0.318 | Download | Download |
Profiling traces can be visualized using Perfetto UI.
python | 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0] |
---|---|
executable | /usr/share/miniconda/envs/sklbench/bin/python |
machine | Linux-5.11.0-1028-azure-x86_64-with-glibc2.10 |
version | |
---|---|
pip | 22.0.4 |
setuptools | 60.9.3 |
sklearn | 1.0.2 |
numpy | 1.22.3 |
scipy | 1.8.0 |
Cython | None |
pandas | 1.4.1 |
matplotlib | 3.5.1 |
joblib | 1.1.0 |
threadpoolctl | 3.1.0 |
user_api | internal_api | prefix | filepath | version | threading_layer | architecture | num_threads | |
---|---|---|---|---|---|---|---|---|
0 | blas | openblas | libopenblas | /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so | 0.3.18 | pthreads | Haswell | 2 |
1 | openmp | openmp | libgomp | /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 | None | NaN | NaN | 2 |
cpu_count | 2 |
---|---|
physical_cpu_count | 2 |