from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_results_directory
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
results_dir = default_results_directory()
# Parameters
results_dir = "./results/local/20220315T132911/"
results_dir = Path(results_dir)
reporting = HpMatchReporting(other_library="sklearnex", config="config.yml", log_scale=True, results_dir=results_dir)
reporting.make_report()
We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up
time scikit-learn / time sklearnex
. For instance, a speed-up of 2 means that sklearnex is twice as fast as scikit-learn for a given set of parameters and a given dataset.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=brute
.
fit
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | fit | 100000 | 100000 | 100 | 1.600 | 0.020 | 0.050 | 0.0 | -1 | 1 | 0.063 | 0.011 | 25.230 | 25.638 | Download | Download |
3 | fit | 100000 | 100000 | 100 | 1.650 | 0.030 | 0.048 | 0.0 | -1 | 5 | 0.059 | 0.001 | 27.755 | 27.761 | Download | Download |
6 | fit | 100000 | 100000 | 100 | 1.636 | 0.030 | 0.049 | 0.0 | 1 | 100 | 0.061 | 0.003 | 26.617 | 26.657 | Download | Download |
9 | fit | 100000 | 100000 | 100 | 1.642 | 0.028 | 0.049 | 0.0 | -1 | 100 | 0.061 | 0.003 | 27.099 | 27.123 | Download | Download |
12 | fit | 100000 | 100000 | 100 | 1.592 | 0.057 | 0.050 | 0.0 | 1 | 5 | 0.062 | 0.004 | 25.478 | 25.523 | Download | Download |
15 | fit | 100000 | 100000 | 100 | 1.613 | 0.036 | 0.050 | 0.0 | 1 | 1 | 0.060 | 0.001 | 26.960 | 26.968 | Download | Download |
18 | fit | 100000 | 100000 | 2 | 0.063 | 0.005 | 0.025 | 0.0 | -1 | 1 | 0.010 | 0.001 | 6.068 | 6.079 | Download | Download |
21 | fit | 100000 | 100000 | 2 | 0.059 | 0.002 | 0.027 | 0.0 | -1 | 5 | 0.010 | 0.001 | 5.883 | 5.894 | Download | Download |
24 | fit | 100000 | 100000 | 2 | 0.059 | 0.003 | 0.027 | 0.0 | 1 | 100 | 0.010 | 0.001 | 5.851 | 5.883 | Download | Download |
27 | fit | 100000 | 100000 | 2 | 0.061 | 0.003 | 0.026 | 0.0 | -1 | 100 | 0.010 | 0.001 | 6.189 | 6.213 | Download | Download |
30 | fit | 100000 | 100000 | 2 | 0.060 | 0.004 | 0.027 | 0.0 | 1 | 5 | 0.010 | 0.001 | 6.158 | 6.181 | Download | Download |
33 | fit | 100000 | 100000 | 2 | 0.065 | 0.001 | 0.025 | 0.0 | 1 | 1 | 0.009 | 0.001 | 6.940 | 6.952 | Download | Download |
predict
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | predict | 100000 | 1000 | 100 | 2.872 | 0.287 | 0.0 | 0.003 | -1 | 1 | 0.463 | 0.010 | 6.207 | 6.208 | Download | Download |
2 | predict | 100000 | 1 | 100 | 0.032 | 0.006 | 0.0 | 0.032 | -1 | 1 | 0.012 | 0.001 | 2.606 | 2.618 | Download | Download |
4 | predict | 100000 | 1000 | 100 | 3.563 | 0.068 | 0.0 | 0.004 | -1 | 5 | 0.460 | 0.005 | 7.746 | 7.747 | Download | Download |
5 | predict | 100000 | 1 | 100 | 0.030 | 0.002 | 0.0 | 0.030 | -1 | 5 | 0.012 | 0.002 | 2.419 | 2.454 | Download | Download |
7 | predict | 100000 | 1000 | 100 | 2.626 | 0.047 | 0.0 | 0.003 | 1 | 100 | 0.518 | 0.011 | 5.067 | 5.069 | Download | Download |
8 | predict | 100000 | 1 | 100 | 0.027 | 0.002 | 0.0 | 0.027 | 1 | 100 | 0.012 | 0.001 | 2.167 | 2.174 | Download | Download |
10 | predict | 100000 | 1000 | 100 | 3.373 | 0.081 | 0.0 | 0.003 | -1 | 100 | 0.518 | 0.008 | 6.510 | 6.511 | Download | Download |
11 | predict | 100000 | 1 | 100 | 0.030 | 0.006 | 0.0 | 0.030 | -1 | 100 | 0.012 | 0.001 | 2.380 | 2.387 | Download | Download |
13 | predict | 100000 | 1000 | 100 | 2.572 | 0.048 | 0.0 | 0.003 | 1 | 5 | 0.469 | 0.011 | 5.478 | 5.480 | Download | Download |
14 | predict | 100000 | 1 | 100 | 0.024 | 0.001 | 0.0 | 0.024 | 1 | 5 | 0.012 | 0.001 | 2.063 | 2.066 | Download | Download |
16 | predict | 100000 | 1000 | 100 | 1.711 | 0.030 | 0.0 | 0.002 | 1 | 1 | 0.466 | 0.007 | 3.674 | 3.675 | Download | Download |
17 | predict | 100000 | 1 | 100 | 0.027 | 0.004 | 0.0 | 0.027 | 1 | 1 | 0.012 | 0.001 | 2.187 | 2.202 | Download | Download |
19 | predict | 100000 | 1000 | 2 | 1.957 | 0.046 | 0.0 | 0.002 | -1 | 1 | 0.111 | 0.006 | 17.707 | 17.729 | Download | Download |
20 | predict | 100000 | 1 | 2 | 0.005 | 0.001 | 0.0 | 0.005 | -1 | 1 | 0.001 | 0.000 | 5.581 | 5.642 | Download | Download |
22 | predict | 100000 | 1000 | 2 | 2.921 | 0.075 | 0.0 | 0.003 | -1 | 5 | 0.111 | 0.006 | 26.245 | 26.289 | Download | Download |
23 | predict | 100000 | 1 | 2 | 0.008 | 0.002 | 0.0 | 0.008 | -1 | 5 | 0.002 | 0.001 | 3.389 | 3.723 | Download | Download |
25 | predict | 100000 | 1000 | 2 | 2.327 | 0.074 | 0.0 | 0.002 | 1 | 100 | 0.165 | 0.007 | 14.061 | 14.073 | Download | Download |
26 | predict | 100000 | 1 | 2 | 0.004 | 0.000 | 0.0 | 0.004 | 1 | 100 | 0.001 | 0.000 | 3.660 | 3.682 | Download | Download |
28 | predict | 100000 | 1000 | 2 | 3.012 | 0.064 | 0.0 | 0.003 | -1 | 100 | 0.168 | 0.010 | 17.918 | 17.952 | Download | Download |
29 | predict | 100000 | 1 | 2 | 0.007 | 0.002 | 0.0 | 0.007 | -1 | 100 | 0.001 | 0.000 | 6.625 | 6.696 | Download | Download |
31 | predict | 100000 | 1000 | 2 | 2.346 | 0.067 | 0.0 | 0.002 | 1 | 5 | 0.108 | 0.004 | 21.681 | 21.695 | Download | Download |
32 | predict | 100000 | 1 | 2 | 0.003 | 0.000 | 0.0 | 0.003 | 1 | 5 | 0.001 | 0.002 | 2.290 | 3.377 | Download | Download |
34 | predict | 100000 | 1000 | 2 | 1.390 | 0.014 | 0.0 | 0.001 | 1 | 1 | 0.108 | 0.005 | 12.890 | 12.905 | Download | Download |
35 | predict | 100000 | 1 | 2 | 0.002 | 0.000 | 0.0 | 0.002 | 1 | 1 | 0.001 | 0.000 | 2.657 | 2.684 | Download | Download |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=kd_tree
.
fit
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | fit | 1000000 | 1000000 | 10 | 3.142 | 0.068 | 0.025 | 0.0 | -1 | 1 | 0.870 | 0.012 | 3.613 | 3.613 | Download | Download |
3 | fit | 1000000 | 1000000 | 10 | 3.226 | 0.107 | 0.025 | 0.0 | -1 | 5 | 0.897 | 0.024 | 3.595 | 3.596 | Download | Download |
6 | fit | 1000000 | 1000000 | 10 | 3.217 | 0.041 | 0.025 | 0.0 | 1 | 100 | 0.890 | 0.018 | 3.616 | 3.617 | Download | Download |
9 | fit | 1000000 | 1000000 | 10 | 3.120 | 0.054 | 0.026 | 0.0 | -1 | 100 | 0.884 | 0.013 | 3.531 | 3.532 | Download | Download |
12 | fit | 1000000 | 1000000 | 10 | 3.113 | 0.051 | 0.026 | 0.0 | 1 | 5 | 0.876 | 0.017 | 3.552 | 3.553 | Download | Download |
15 | fit | 1000000 | 1000000 | 10 | 3.059 | 0.049 | 0.026 | 0.0 | 1 | 1 | 0.872 | 0.014 | 3.509 | 3.510 | Download | Download |
18 | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.024 | 0.0 | -1 | 1 | 0.001 | 0.000 | 0.615 | 0.616 | Download | Download |
21 | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.027 | 0.0 | -1 | 5 | 0.001 | 0.000 | 0.546 | 0.547 | Download | Download |
24 | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.023 | 0.0 | 1 | 100 | 0.001 | 0.000 | 0.612 | 0.613 | Download | Download |
27 | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.022 | 0.0 | -1 | 100 | 0.001 | 0.000 | 0.659 | 0.660 | Download | Download |
30 | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.023 | 0.0 | 1 | 5 | 0.001 | 0.000 | 0.583 | 0.587 | Download | Download |
33 | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.021 | 0.0 | 1 | 1 | 0.002 | 0.003 | 0.377 | 0.624 | Download | Download |
predict
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | predict | 1000000 | 1000 | 10 | 0.480 | 0.013 | 0.000 | 0.000 | -1 | 1 | 0.129 | 0.004 | 3.728 | 3.729 | Download | Download |
2 | predict | 1000000 | 1 | 10 | 0.003 | 0.000 | 0.000 | 0.003 | -1 | 1 | 0.000 | 0.000 | 10.433 | 10.573 | Download | Download |
4 | predict | 1000000 | 1000 | 10 | 0.925 | 0.015 | 0.000 | 0.001 | -1 | 5 | 0.232 | 0.008 | 3.993 | 3.995 | Download | Download |
5 | predict | 1000000 | 1 | 10 | 0.003 | 0.000 | 0.000 | 0.003 | -1 | 5 | 0.000 | 0.000 | 8.158 | 8.409 | Download | Download |
7 | predict | 1000000 | 1000 | 10 | 5.156 | 0.034 | 0.000 | 0.005 | 1 | 100 | 0.700 | 0.006 | 7.360 | 7.361 | Download | Download |
8 | predict | 1000000 | 1 | 10 | 0.003 | 0.001 | 0.000 | 0.003 | 1 | 100 | 0.001 | 0.000 | 3.979 | 4.033 | Download | Download |
10 | predict | 1000000 | 1000 | 10 | 2.941 | 0.024 | 0.000 | 0.003 | -1 | 100 | 0.719 | 0.025 | 4.089 | 4.091 | Download | Download |
11 | predict | 1000000 | 1 | 10 | 0.005 | 0.001 | 0.000 | 0.005 | -1 | 100 | 0.001 | 0.000 | 7.382 | 7.553 | Download | Download |
13 | predict | 1000000 | 1000 | 10 | 1.499 | 0.026 | 0.000 | 0.001 | 1 | 5 | 0.230 | 0.005 | 6.525 | 6.526 | Download | Download |
14 | predict | 1000000 | 1 | 10 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 5 | 0.000 | 0.000 | 3.677 | 3.749 | Download | Download |
16 | predict | 1000000 | 1000 | 10 | 0.810 | 0.014 | 0.000 | 0.001 | 1 | 1 | 0.129 | 0.005 | 6.291 | 6.296 | Download | Download |
17 | predict | 1000000 | 1 | 10 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 1 | 0.000 | 0.000 | 3.568 | 3.692 | Download | Download |
19 | predict | 1000 | 1000 | 2 | 0.031 | 0.003 | 0.001 | 0.000 | -1 | 1 | 0.001 | 0.000 | 42.756 | 43.907 | Download | Download |
20 | predict | 1000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | -1 | 1 | 0.000 | 0.000 | 12.604 | 12.769 | Download | Download |
22 | predict | 1000 | 1000 | 2 | 0.032 | 0.001 | 0.000 | 0.000 | -1 | 5 | 0.001 | 0.000 | 32.389 | 32.471 | Download | Download |
23 | predict | 1000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | -1 | 5 | 0.000 | 0.000 | 13.187 | 13.381 | Download | Download |
25 | predict | 1000 | 1000 | 2 | 0.043 | 0.003 | 0.000 | 0.000 | 1 | 100 | 0.006 | 0.000 | 6.990 | 7.008 | Download | Download |
26 | predict | 1000 | 1 | 2 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 100 | 0.000 | 0.000 | 3.032 | 3.094 | Download | Download |
28 | predict | 1000 | 1000 | 2 | 0.046 | 0.002 | 0.000 | 0.000 | -1 | 100 | 0.006 | 0.000 | 7.538 | 7.553 | Download | Download |
29 | predict | 1000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | -1 | 100 | 0.000 | 0.000 | 12.252 | 12.569 | Download | Download |
31 | predict | 1000 | 1000 | 2 | 0.031 | 0.002 | 0.001 | 0.000 | 1 | 5 | 0.001 | 0.000 | 29.924 | 30.138 | Download | Download |
32 | predict | 1000 | 1 | 2 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 5 | 0.000 | 0.000 | 3.599 | 3.659 | Download | Download |
34 | predict | 1000 | 1000 | 2 | 0.029 | 0.003 | 0.001 | 0.000 | 1 | 1 | 0.001 | 0.001 | 34.903 | 42.466 | Download | Download |
35 | predict | 1000 | 1 | 2 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 1 | 0.000 | 0.000 | 3.565 | 3.618 | Download | Download |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=full
, n_clusters=3
, max_iter=30
, n_init=1
, tol=1e-16
.
fit
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | fit | 1000000 | 1000000 | 2 | 0.605 | 0.009 | 0.026 | 0.0 | 30 | random | 0.332 | 0.007 | 1.823 | 1.823 | Download | Download |
3 | fit | 1000000 | 1000000 | 2 | 0.705 | 0.011 | 0.023 | 0.0 | 30 | k-means++ | 0.377 | 0.005 | 1.871 | 1.871 | Download | Download |
6 | fit | 1000000 | 1000000 | 100 | 8.307 | 0.505 | 0.096 | 0.0 | 30 | random | 4.319 | 0.056 | 1.923 | 1.923 | Download | Download |
9 | fit | 1000000 | 1000000 | 100 | 8.291 | 0.157 | 0.096 | 0.0 | 30 | k-means++ | 4.578 | 0.086 | 1.811 | 1.811 | Download | Download |
predict
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | predict | 1000000 | 1000 | 2 | 0.000 | 0.0 | 0.050 | 0.0 | 30 | random | 0.0 | 0.0 | 1.204 | 1.223 | Download | Download |
2 | predict | 1000000 | 1 | 2 | 0.000 | 0.0 | 0.000 | 0.0 | 30 | random | 0.0 | 0.0 | 1.236 | 1.282 | Download | Download |
4 | predict | 1000000 | 1000 | 2 | 0.000 | 0.0 | 0.047 | 0.0 | 30 | k-means++ | 0.0 | 0.0 | 1.167 | 1.227 | Download | Download |
5 | predict | 1000000 | 1 | 2 | 0.000 | 0.0 | 0.000 | 0.0 | 30 | k-means++ | 0.0 | 0.0 | 1.345 | 1.358 | Download | Download |
7 | predict | 1000000 | 1000 | 100 | 0.001 | 0.0 | 1.327 | 0.0 | 30 | random | 0.0 | 0.0 | 1.279 | 1.492 | Download | Download |
8 | predict | 1000000 | 1 | 100 | 0.000 | 0.0 | 0.003 | 0.0 | 30 | random | 0.0 | 0.0 | 1.273 | 1.308 | Download | Download |
10 | predict | 1000000 | 1000 | 100 | 0.001 | 0.0 | 1.402 | 0.0 | 30 | k-means++ | 0.0 | 0.0 | 1.384 | 1.435 | Download | Download |
11 | predict | 1000000 | 1 | 100 | 0.000 | 0.0 | 0.003 | 0.0 | 30 | k-means++ | 0.0 | 0.0 | 1.295 | 1.321 | Download | Download |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=full
, n_clusters=300
, max_iter=20
, n_init=1
, tol=1e-16
.
estimator | library | diff_adjusted_rand_scores | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | algorithm | init | max_iter | n_clusters | n_init | tol | adjusted_rand_score_sklearn | mean_duration_sklearnex | std_duration_sklearnex | adjusted_rand_score_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | sklearn_KMeans_short | sklearn | 0.032069 | predict | 10000 | 1000 | 100 | 0.002492 | 0.000328 | 0.321010 | 0.000002 | 20 | full | random | 20 | 300 | 1 | 1.000000e-16 | 0.293414 | 0.001679 | 0.000109 | 0.325483 | 1.484295 | 1.487423 |
10 | sklearn_KMeans_short | sklearn | 0.032656 | predict | 10000 | 1000 | 100 | 0.002050 | 0.000159 | 0.390215 | 0.000002 | 20 | full | k-means++ | 20 | 300 | 1 | 1.000000e-16 | 0.283247 | 0.001900 | 0.000445 | 0.315903 | 1.078933 | 1.108130 |
fit
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | fit | 10000 | 10000 | 2 | 0.112 | 0.006 | 0.001 | 0.0 | 20 | random | 0.057 | 0.003 | 1.955 | 1.958 | Download | Download |
3 | fit | 10000 | 10000 | 2 | 0.336 | 0.006 | 0.000 | 0.0 | 20 | k-means++ | 0.146 | 0.003 | 2.294 | 2.294 | Download | Download |
6 | fit | 10000 | 10000 | 100 | 0.375 | 0.012 | 0.021 | 0.0 | 20 | random | 0.296 | 0.006 | 1.270 | 1.270 | Download | Download |
9 | fit | 10000 | 10000 | 100 | 1.264 | 0.034 | 0.006 | 0.0 | 20 | k-means++ | 0.660 | 0.008 | 1.915 | 1.915 | Download | Download |
predict
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | predict | 10000 | 1000 | 2 | 0.001 | 0.0 | 0.020 | 0.000 | 20 | random | 0.001 | 0.0 | 1.026 | 1.032 | Download | Download |
2 | predict | 10000 | 1 | 2 | 0.000 | 0.0 | 0.000 | 0.000 | 20 | random | 0.000 | 0.0 | 1.822 | 1.841 | Download | Download |
4 | predict | 10000 | 1000 | 2 | 0.001 | 0.0 | 0.021 | 0.000 | 20 | k-means++ | 0.001 | 0.0 | 0.990 | 0.992 | Download | Download |
5 | predict | 10000 | 1 | 2 | 0.000 | 0.0 | 0.000 | 0.000 | 20 | k-means++ | 0.000 | 0.0 | 1.219 | 1.250 | Download | Download |
7 | predict | 10000 | 1000 | 100 | 0.002 | 0.0 | 0.321 | 0.000 | 20 | random | 0.002 | 0.0 | 1.484 | 1.487 | Download | Download |
8 | predict | 10000 | 1 | 100 | 0.001 | 0.0 | 0.001 | 0.001 | 20 | random | 0.000 | 0.0 | 2.343 | 2.356 | Download | Download |
10 | predict | 10000 | 1000 | 100 | 0.002 | 0.0 | 0.390 | 0.000 | 20 | k-means++ | 0.002 | 0.0 | 1.079 | 1.108 | Download | Download |
11 | predict | 10000 | 1 | 100 | 0.000 | 0.0 | 0.002 | 0.000 | 20 | k-means++ | 0.000 | 0.0 | 1.405 | 1.497 | Download | Download |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: penalty=l2
, dual=False
, tol=0.0001
, C=1.0
, fit_intercept=True
, intercept_scaling=1.0
, class_weight=nan
, random_state=nan
, solver=lbfgs
, max_iter=100
, multi_class=auto
, verbose=0
, warm_start=False
, n_jobs=nan
, l1_ratio=nan
.
fit
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | fit | 1000000 | 1000000 | 100 | 17.838 | 0.249 | 0.045 | 0.000 | [20] | 3.214 | 0.034 | 5.550 | 5.551 | Download | Download |
3 | fit | 1000 | 1000 | 10000 | 1.448 | 0.049 | 0.055 | 0.001 | [27] | 1.335 | 0.045 | 1.085 | 1.085 | Download | Download |
predict
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | predict | 1000000 | 1000 | 100 | 0.000 | 0.000 | 2.095 | 0.0 | [20] | 0.001 | 0.001 | 0.424 | 0.771 | Download | Download |
2 | predict | 1000000 | 1 | 100 | 0.000 | 0.000 | 0.008 | 0.0 | [20] | 0.000 | 0.000 | 0.310 | 0.315 | Download | Download |
4 | predict | 1000 | 100 | 10000 | 0.003 | 0.001 | 2.659 | 0.0 | [27] | 0.004 | 0.000 | 0.688 | 0.691 | Download | Download |
5 | predict | 1000 | 1 | 10000 | 0.000 | 0.000 | 0.532 | 0.0 | [27] | 0.001 | 0.000 | 0.155 | 0.160 | Download | Download |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters:
fit
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | copy_X | fit_intercept | normalize | positive | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | fit | 1000 | 1000 | 10000 | 1.956 | 0.018 | 0.041 | 0.002 | True | True | deprecated | False | 2.232 | 0.044 | 0.876 | 0.876 | Download | Download |
3 | fit | 1000000 | 1000000 | 100 | 11.412 | 0.694 | 0.070 | 0.000 | True | True | deprecated | False | 0.424 | 0.011 | 26.885 | 26.894 | Download | Download |
predict
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | copy_X | fit_intercept | normalize | positive | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | predict | 1000 | 1000 | 10000 | 0.014 | 0.001 | 5.809 | 0.0 | True | True | deprecated | False | 0.023 | 0.001 | 0.605 | 0.606 | Download | Download |
2 | predict | 1000 | 10 | 10000 | 0.000 | 0.000 | 3.896 | 0.0 | True | True | deprecated | False | 0.000 | 0.000 | 0.525 | 0.545 | Download | Download |
4 | predict | 1000000 | 1000 | 100 | 0.000 | 0.000 | 4.295 | 0.0 | True | True | deprecated | False | 0.001 | 0.000 | 0.337 | 0.372 | Download | Download |
5 | predict | 1000000 | 10 | 100 | 0.000 | 0.000 | 0.077 | 0.0 | True | True | deprecated | False | 0.000 | 0.000 | 0.334 | 0.363 | Download | Download |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: alpha=1e-06
.
fit
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | fit | 1000 | 1000 | 10000 | 0.339 | 0.009 | 0.236 | 0.0 | 0.403 | 0.110 | 0.840 | 0.870 | Download | Download |
3 | fit | 1000000 | 1000000 | 100 | 1.472 | 0.111 | 0.544 | 0.0 | 0.429 | 0.011 | 3.433 | 3.434 | Download | Download |
predict
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | predict | 1000 | 1000 | 10000 | 0.013 | 0.001 | 6.006 | 0.0 | 0.025 | 0.002 | 0.543 | 0.546 | Download | Download |
2 | predict | 1000 | 10 | 10000 | 0.000 | 0.000 | 4.763 | 0.0 | 0.000 | 0.000 | 0.412 | 0.436 | Download | Download |
4 | predict | 1000000 | 1000 | 100 | 0.001 | 0.001 | 1.269 | 0.0 | 0.000 | 0.000 | 1.744 | 1.804 | Download | Download |
5 | predict | 1000000 | 10 | 100 | 0.000 | 0.000 | 0.096 | 0.0 | 0.000 | 0.000 | 0.309 | 0.321 | Download | Download |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters:
fit
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | angle | early_exaggeration | init | learning_rate | method | metric | min_grad_norm | n_components | n_iter_without_progress | perplexity | square_distances | verbose | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | fit | 1000 | 1000 | 3 | 4.315 | 0.175 | 0.0 | 0.004 | 1000 | 0.5 | 12.0 | warn | warn | barnes_hut | euclidean | 0.0 | 2 | 300 | 30.0 | legacy | 0 | 4.523 | 0.387 | 0.954 | 0.958 | Download | Download |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: n_components=10
.
fit
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | sklearn_profiling | sklearnex_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | fit | 100000 | 100000 | 100 | 0.626 | 0.004 | 0.128 | 0.0 | 0.048 | 0.006 | 12.989 | 13.088 | Download | Download |
1 | fit | 10000 | 10000 | 1000 | 0.608 | 0.012 | 0.131 | 0.0 | 0.349 | 0.006 | 1.743 | 1.744 | Download | Download |
Profiling traces can be visualized using Perfetto UI.
python | 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0] |
---|---|
executable | /usr/share/miniconda/envs/sklbench/bin/python |
machine | Linux-5.11.0-1028-azure-x86_64-with-glibc2.10 |
version | |
---|---|
pip | 22.0.4 |
setuptools | 60.9.3 |
sklearn | 1.0.2 |
numpy | 1.22.3 |
scipy | 1.8.0 |
Cython | None |
pandas | 1.4.1 |
matplotlib | 3.5.1 |
joblib | 1.1.0 |
threadpoolctl | 3.1.0 |
user_api | internal_api | prefix | filepath | version | threading_layer | architecture | num_threads | |
---|---|---|---|---|---|---|---|---|
0 | blas | openblas | libopenblas | /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so | 0.3.18 | pthreads | Haswell | 2 |
1 | openmp | openmp | libgomp | /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 | None | NaN | NaN | 2 |
cpu_count | 2 |
---|---|
physical_cpu_count | 2 |