In [1]:
from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_results_directory
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

scikit-learn-intelex (Intel® oneAPI) vs. scikit-learn¶

In [2]:
results_dir = default_results_directory()
In [3]:
# Parameters
results_dir = "./results/local/20220315T132911/"
In [4]:
results_dir = Path(results_dir)
In [5]:
reporting = HpMatchReporting(other_library="sklearnex", config="config.yml", log_scale=True, results_dir=results_dir)
reporting.make_report()

We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up time scikit-learn / time sklearnex. For instance, a speed-up of 2 means that sklearnex is twice as fast as scikit-learn for a given set of parameters and a given dataset.

KNeighborsClassifier (brute force) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=brute.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 1.600 0.020 0.050 0.0 -1 1 0.063 0.011 25.230 25.638 Download Download
3 fit 100000 100000 100 1.650 0.030 0.048 0.0 -1 5 0.059 0.001 27.755 27.761 Download Download
6 fit 100000 100000 100 1.636 0.030 0.049 0.0 1 100 0.061 0.003 26.617 26.657 Download Download
9 fit 100000 100000 100 1.642 0.028 0.049 0.0 -1 100 0.061 0.003 27.099 27.123 Download Download
12 fit 100000 100000 100 1.592 0.057 0.050 0.0 1 5 0.062 0.004 25.478 25.523 Download Download
15 fit 100000 100000 100 1.613 0.036 0.050 0.0 1 1 0.060 0.001 26.960 26.968 Download Download
18 fit 100000 100000 2 0.063 0.005 0.025 0.0 -1 1 0.010 0.001 6.068 6.079 Download Download
21 fit 100000 100000 2 0.059 0.002 0.027 0.0 -1 5 0.010 0.001 5.883 5.894 Download Download
24 fit 100000 100000 2 0.059 0.003 0.027 0.0 1 100 0.010 0.001 5.851 5.883 Download Download
27 fit 100000 100000 2 0.061 0.003 0.026 0.0 -1 100 0.010 0.001 6.189 6.213 Download Download
30 fit 100000 100000 2 0.060 0.004 0.027 0.0 1 5 0.010 0.001 6.158 6.181 Download Download
33 fit 100000 100000 2 0.065 0.001 0.025 0.0 1 1 0.009 0.001 6.940 6.952 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 100000 1000 100 2.872 0.287 0.0 0.003 -1 1 0.463 0.010 6.207 6.208 Download Download
2 predict 100000 1 100 0.032 0.006 0.0 0.032 -1 1 0.012 0.001 2.606 2.618 Download Download
4 predict 100000 1000 100 3.563 0.068 0.0 0.004 -1 5 0.460 0.005 7.746 7.747 Download Download
5 predict 100000 1 100 0.030 0.002 0.0 0.030 -1 5 0.012 0.002 2.419 2.454 Download Download
7 predict 100000 1000 100 2.626 0.047 0.0 0.003 1 100 0.518 0.011 5.067 5.069 Download Download
8 predict 100000 1 100 0.027 0.002 0.0 0.027 1 100 0.012 0.001 2.167 2.174 Download Download
10 predict 100000 1000 100 3.373 0.081 0.0 0.003 -1 100 0.518 0.008 6.510 6.511 Download Download
11 predict 100000 1 100 0.030 0.006 0.0 0.030 -1 100 0.012 0.001 2.380 2.387 Download Download
13 predict 100000 1000 100 2.572 0.048 0.0 0.003 1 5 0.469 0.011 5.478 5.480 Download Download
14 predict 100000 1 100 0.024 0.001 0.0 0.024 1 5 0.012 0.001 2.063 2.066 Download Download
16 predict 100000 1000 100 1.711 0.030 0.0 0.002 1 1 0.466 0.007 3.674 3.675 Download Download
17 predict 100000 1 100 0.027 0.004 0.0 0.027 1 1 0.012 0.001 2.187 2.202 Download Download
19 predict 100000 1000 2 1.957 0.046 0.0 0.002 -1 1 0.111 0.006 17.707 17.729 Download Download
20 predict 100000 1 2 0.005 0.001 0.0 0.005 -1 1 0.001 0.000 5.581 5.642 Download Download
22 predict 100000 1000 2 2.921 0.075 0.0 0.003 -1 5 0.111 0.006 26.245 26.289 Download Download
23 predict 100000 1 2 0.008 0.002 0.0 0.008 -1 5 0.002 0.001 3.389 3.723 Download Download
25 predict 100000 1000 2 2.327 0.074 0.0 0.002 1 100 0.165 0.007 14.061 14.073 Download Download
26 predict 100000 1 2 0.004 0.000 0.0 0.004 1 100 0.001 0.000 3.660 3.682 Download Download
28 predict 100000 1000 2 3.012 0.064 0.0 0.003 -1 100 0.168 0.010 17.918 17.952 Download Download
29 predict 100000 1 2 0.007 0.002 0.0 0.007 -1 100 0.001 0.000 6.625 6.696 Download Download
31 predict 100000 1000 2 2.346 0.067 0.0 0.002 1 5 0.108 0.004 21.681 21.695 Download Download
32 predict 100000 1 2 0.003 0.000 0.0 0.003 1 5 0.001 0.002 2.290 3.377 Download Download
34 predict 100000 1000 2 1.390 0.014 0.0 0.001 1 1 0.108 0.005 12.890 12.905 Download Download
35 predict 100000 1 2 0.002 0.000 0.0 0.002 1 1 0.001 0.000 2.657 2.684 Download Download

Profiling traces can be visualized using Perfetto UI.

KNeighborsClassifier (KD tree) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=kd_tree.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 10 3.142 0.068 0.025 0.0 -1 1 0.870 0.012 3.613 3.613 Download Download
3 fit 1000000 1000000 10 3.226 0.107 0.025 0.0 -1 5 0.897 0.024 3.595 3.596 Download Download
6 fit 1000000 1000000 10 3.217 0.041 0.025 0.0 1 100 0.890 0.018 3.616 3.617 Download Download
9 fit 1000000 1000000 10 3.120 0.054 0.026 0.0 -1 100 0.884 0.013 3.531 3.532 Download Download
12 fit 1000000 1000000 10 3.113 0.051 0.026 0.0 1 5 0.876 0.017 3.552 3.553 Download Download
15 fit 1000000 1000000 10 3.059 0.049 0.026 0.0 1 1 0.872 0.014 3.509 3.510 Download Download
18 fit 1000 1000 2 0.001 0.000 0.024 0.0 -1 1 0.001 0.000 0.615 0.616 Download Download
21 fit 1000 1000 2 0.001 0.000 0.027 0.0 -1 5 0.001 0.000 0.546 0.547 Download Download
24 fit 1000 1000 2 0.001 0.000 0.023 0.0 1 100 0.001 0.000 0.612 0.613 Download Download
27 fit 1000 1000 2 0.001 0.000 0.022 0.0 -1 100 0.001 0.000 0.659 0.660 Download Download
30 fit 1000 1000 2 0.001 0.000 0.023 0.0 1 5 0.001 0.000 0.583 0.587 Download Download
33 fit 1000 1000 2 0.001 0.000 0.021 0.0 1 1 0.002 0.003 0.377 0.624 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 10 0.480 0.013 0.000 0.000 -1 1 0.129 0.004 3.728 3.729 Download Download
2 predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 1 0.000 0.000 10.433 10.573 Download Download
4 predict 1000000 1000 10 0.925 0.015 0.000 0.001 -1 5 0.232 0.008 3.993 3.995 Download Download
5 predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 5 0.000 0.000 8.158 8.409 Download Download
7 predict 1000000 1000 10 5.156 0.034 0.000 0.005 1 100 0.700 0.006 7.360 7.361 Download Download
8 predict 1000000 1 10 0.003 0.001 0.000 0.003 1 100 0.001 0.000 3.979 4.033 Download Download
10 predict 1000000 1000 10 2.941 0.024 0.000 0.003 -1 100 0.719 0.025 4.089 4.091 Download Download
11 predict 1000000 1 10 0.005 0.001 0.000 0.005 -1 100 0.001 0.000 7.382 7.553 Download Download
13 predict 1000000 1000 10 1.499 0.026 0.000 0.001 1 5 0.230 0.005 6.525 6.526 Download Download
14 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 5 0.000 0.000 3.677 3.749 Download Download
16 predict 1000000 1000 10 0.810 0.014 0.000 0.001 1 1 0.129 0.005 6.291 6.296 Download Download
17 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 1 0.000 0.000 3.568 3.692 Download Download
19 predict 1000 1000 2 0.031 0.003 0.001 0.000 -1 1 0.001 0.000 42.756 43.907 Download Download
20 predict 1000 1 2 0.003 0.000 0.000 0.003 -1 1 0.000 0.000 12.604 12.769 Download Download
22 predict 1000 1000 2 0.032 0.001 0.000 0.000 -1 5 0.001 0.000 32.389 32.471 Download Download
23 predict 1000 1 2 0.003 0.000 0.000 0.003 -1 5 0.000 0.000 13.187 13.381 Download Download
25 predict 1000 1000 2 0.043 0.003 0.000 0.000 1 100 0.006 0.000 6.990 7.008 Download Download
26 predict 1000 1 2 0.001 0.000 0.000 0.001 1 100 0.000 0.000 3.032 3.094 Download Download
28 predict 1000 1000 2 0.046 0.002 0.000 0.000 -1 100 0.006 0.000 7.538 7.553 Download Download
29 predict 1000 1 2 0.003 0.000 0.000 0.003 -1 100 0.000 0.000 12.252 12.569 Download Download
31 predict 1000 1000 2 0.031 0.002 0.001 0.000 1 5 0.001 0.000 29.924 30.138 Download Download
32 predict 1000 1 2 0.001 0.000 0.000 0.001 1 5 0.000 0.000 3.599 3.659 Download Download
34 predict 1000 1000 2 0.029 0.003 0.001 0.000 1 1 0.001 0.001 34.903 42.466 Download Download
35 predict 1000 1 2 0.001 0.000 0.000 0.001 1 1 0.000 0.000 3.565 3.618 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (tall) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=full, n_clusters=3, max_iter=30, n_init=1, tol=1e-16.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 2 0.605 0.009 0.026 0.0 30 random 0.332 0.007 1.823 1.823 Download Download
3 fit 1000000 1000000 2 0.705 0.011 0.023 0.0 30 k-means++ 0.377 0.005 1.871 1.871 Download Download
6 fit 1000000 1000000 100 8.307 0.505 0.096 0.0 30 random 4.319 0.056 1.923 1.923 Download Download
9 fit 1000000 1000000 100 8.291 0.157 0.096 0.0 30 k-means++ 4.578 0.086 1.811 1.811 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 2 0.000 0.0 0.050 0.0 30 random 0.0 0.0 1.204 1.223 Download Download
2 predict 1000000 1 2 0.000 0.0 0.000 0.0 30 random 0.0 0.0 1.236 1.282 Download Download
4 predict 1000000 1000 2 0.000 0.0 0.047 0.0 30 k-means++ 0.0 0.0 1.167 1.227 Download Download
5 predict 1000000 1 2 0.000 0.0 0.000 0.0 30 k-means++ 0.0 0.0 1.345 1.358 Download Download
7 predict 1000000 1000 100 0.001 0.0 1.327 0.0 30 random 0.0 0.0 1.279 1.492 Download Download
8 predict 1000000 1 100 0.000 0.0 0.003 0.0 30 random 0.0 0.0 1.273 1.308 Download Download
10 predict 1000000 1000 100 0.001 0.0 1.402 0.0 30 k-means++ 0.0 0.0 1.384 1.435 Download Download
11 predict 1000000 1 100 0.000 0.0 0.003 0.0 30 k-means++ 0.0 0.0 1.295 1.321 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (short) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=full, n_clusters=300, max_iter=20, n_init=1, tol=1e-16.

Mismatches between validation scores¶

WARNING! Mismatch between validation scores for 2 predictions (25.0%).
The observed differences can be found in the diff_adjusted_rand_scores column.
The chosen difference threshold is 0.01 for adjusted_rand_score.
The biggest difference is 0.033 for adjusted_rand_score.
See details in the dataframe below.
estimator library diff_adjusted_rand_scores function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter algorithm init max_iter n_clusters n_init tol adjusted_rand_score_sklearn mean_duration_sklearnex std_duration_sklearnex adjusted_rand_score_sklearnex speedup std_speedup
7 sklearn_KMeans_short sklearn 0.032069 predict 10000 1000 100 0.002492 0.000328 0.321010 0.000002 20 full random 20 300 1 1.000000e-16 0.293414 0.001679 0.000109 0.325483 1.484295 1.487423
10 sklearn_KMeans_short sklearn 0.032656 predict 10000 1000 100 0.002050 0.000159 0.390215 0.000002 20 full k-means++ 20 300 1 1.000000e-16 0.283247 0.001900 0.000445 0.315903 1.078933 1.108130

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 10000 10000 2 0.112 0.006 0.001 0.0 20 random 0.057 0.003 1.955 1.958 Download Download
3 fit 10000 10000 2 0.336 0.006 0.000 0.0 20 k-means++ 0.146 0.003 2.294 2.294 Download Download
6 fit 10000 10000 100 0.375 0.012 0.021 0.0 20 random 0.296 0.006 1.270 1.270 Download Download
9 fit 10000 10000 100 1.264 0.034 0.006 0.0 20 k-means++ 0.660 0.008 1.915 1.915 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 10000 1000 2 0.001 0.0 0.020 0.000 20 random 0.001 0.0 1.026 1.032 Download Download
2 predict 10000 1 2 0.000 0.0 0.000 0.000 20 random 0.000 0.0 1.822 1.841 Download Download
4 predict 10000 1000 2 0.001 0.0 0.021 0.000 20 k-means++ 0.001 0.0 0.990 0.992 Download Download
5 predict 10000 1 2 0.000 0.0 0.000 0.000 20 k-means++ 0.000 0.0 1.219 1.250 Download Download
7 predict 10000 1000 100 0.002 0.0 0.321 0.000 20 random 0.002 0.0 1.484 1.487 Download Download
8 predict 10000 1 100 0.001 0.0 0.001 0.001 20 random 0.000 0.0 2.343 2.356 Download Download
10 predict 10000 1000 100 0.002 0.0 0.390 0.000 20 k-means++ 0.002 0.0 1.079 1.108 Download Download
11 predict 10000 1 100 0.000 0.0 0.002 0.000 20 k-means++ 0.000 0.0 1.405 1.497 Download Download

Profiling traces can be visualized using Perfetto UI.

Logistic Regression ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: penalty=l2, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1.0, class_weight=nan, random_state=nan, solver=lbfgs, max_iter=100, multi_class=auto, verbose=0, warm_start=False, n_jobs=nan, l1_ratio=nan.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 100 17.838 0.249 0.045 0.000 [20] 3.214 0.034 5.550 5.551 Download Download
3 fit 1000 1000 10000 1.448 0.049 0.055 0.001 [27] 1.335 0.045 1.085 1.085 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 100 0.000 0.000 2.095 0.0 [20] 0.001 0.001 0.424 0.771 Download Download
2 predict 1000000 1 100 0.000 0.000 0.008 0.0 [20] 0.000 0.000 0.310 0.315 Download Download
4 predict 1000 100 10000 0.003 0.001 2.659 0.0 [27] 0.004 0.000 0.688 0.691 Download Download
5 predict 1000 1 10000 0.000 0.000 0.532 0.0 [27] 0.001 0.000 0.155 0.160 Download Download

Profiling traces can be visualized using Perfetto UI.

LinearRegression ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters:

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 1.956 0.018 0.041 0.002 True True deprecated False 2.232 0.044 0.876 0.876 Download Download
3 fit 1000000 1000000 100 11.412 0.694 0.070 0.000 True True deprecated False 0.424 0.011 26.885 26.894 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.014 0.001 5.809 0.0 True True deprecated False 0.023 0.001 0.605 0.606 Download Download
2 predict 1000 10 10000 0.000 0.000 3.896 0.0 True True deprecated False 0.000 0.000 0.525 0.545 Download Download
4 predict 1000000 1000 100 0.000 0.000 4.295 0.0 True True deprecated False 0.001 0.000 0.337 0.372 Download Download
5 predict 1000000 10 100 0.000 0.000 0.077 0.0 True True deprecated False 0.000 0.000 0.334 0.363 Download Download

Profiling traces can be visualized using Perfetto UI.

Ridge ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: alpha=1e-06.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 0.339 0.009 0.236 0.0 0.403 0.110 0.840 0.870 Download Download
3 fit 1000000 1000000 100 1.472 0.111 0.544 0.0 0.429 0.011 3.433 3.434 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.013 0.001 6.006 0.0 0.025 0.002 0.543 0.546 Download Download
2 predict 1000 10 10000 0.000 0.000 4.763 0.0 0.000 0.000 0.412 0.436 Download Download
4 predict 1000000 1000 100 0.001 0.001 1.269 0.0 0.000 0.000 1.744 1.804 Download Download
5 predict 1000000 10 100 0.000 0.000 0.096 0.0 0.000 0.000 0.309 0.321 Download Download

Profiling traces can be visualized using Perfetto UI.

TSNE ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters:

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter angle early_exaggeration init learning_rate method metric min_grad_norm n_components n_iter_without_progress perplexity square_distances verbose mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 3 4.315 0.175 0.0 0.004 1000 0.5 12.0 warn warn barnes_hut euclidean 0.0 2 300 30.0 legacy 0 4.523 0.387 0.954 0.958 Download Download

Profiling traces can be visualized using Perfetto UI.

PCA ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: n_components=10.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 0.626 0.004 0.128 0.0 0.048 0.006 12.989 13.088 Download Download
1 fit 10000 10000 1000 0.608 0.012 0.131 0.0 0.349 0.006 1.743 1.744 Download Download

Profiling traces can be visualized using Perfetto UI.

Benchmark environment information¶

System¶

python 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0]
executable /usr/share/miniconda/envs/sklbench/bin/python
machine Linux-5.11.0-1028-azure-x86_64-with-glibc2.10

Dependencies¶

version
pip 22.0.4
setuptools 60.9.3
sklearn 1.0.2
numpy 1.22.3
scipy 1.8.0
Cython None
pandas 1.4.1
matplotlib 3.5.1
joblib 1.1.0
threadpoolctl 3.1.0

Threadpool¶

user_api internal_api prefix filepath version threading_layer architecture num_threads
0 blas openblas libopenblas /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so 0.3.18 pthreads Haswell 2
1 openmp openmp libgomp /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 None NaN NaN 2

CPU count¶

cpu_count 2
physical_cpu_count 2