In [1]:
from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_results_directory
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

scikit-learn-intelex (Intel® oneAPI) vs. scikit-learn¶

In [2]:
results_dir = default_results_directory()
In [3]:
# Parameters
results_dir = "./results/local/20220315T181132/"
In [4]:
results_dir = Path(results_dir)
In [5]:
reporting = HpMatchReporting(other_library="sklearnex", config="config.yml", log_scale=True, results_dir=results_dir)
reporting.make_report()

We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up time scikit-learn / time sklearnex. For instance, a speed-up of 2 means that sklearnex is twice as fast as scikit-learn for a given set of parameters and a given dataset.

KNeighborsClassifier (brute force) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=brute.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 1.530 0.026 0.052 0.0 -1 1 0.056 0.007 27.390 27.616 Download Download
3 fit 100000 100000 100 1.489 0.015 0.054 0.0 -1 5 0.051 0.000 29.049 29.049 Download Download
6 fit 100000 100000 100 1.495 0.018 0.054 0.0 1 100 0.051 0.000 29.274 29.274 Download Download
9 fit 100000 100000 100 1.545 0.053 0.052 0.0 -1 100 0.051 0.000 30.442 30.443 Download Download
12 fit 100000 100000 100 1.504 0.031 0.053 0.0 1 5 0.051 0.000 29.395 29.395 Download Download
15 fit 100000 100000 100 1.514 0.041 0.053 0.0 1 1 0.052 0.000 29.289 29.290 Download Download
18 fit 100000 100000 2 0.059 0.001 0.027 0.0 -1 1 0.010 0.000 5.707 5.709 Download Download
21 fit 100000 100000 2 0.059 0.000 0.027 0.0 -1 5 0.010 0.000 5.784 5.785 Download Download
24 fit 100000 100000 2 0.058 0.000 0.027 0.0 1 100 0.010 0.000 5.567 5.567 Download Download
27 fit 100000 100000 2 0.058 0.000 0.027 0.0 -1 100 0.011 0.000 5.538 5.538 Download Download
30 fit 100000 100000 2 0.059 0.000 0.027 0.0 1 5 0.010 0.000 5.736 5.737 Download Download
33 fit 100000 100000 2 0.061 0.002 0.026 0.0 1 1 0.010 0.000 5.887 5.887 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 100000 1000 100 2.636 0.251 0.000 0.003 -1 1 0.217 0.010 12.168 12.180 Download Download
2 predict 100000 1 100 0.027 0.004 0.000 0.027 -1 1 0.009 0.000 2.971 2.972 Download Download
4 predict 100000 1000 100 3.210 0.071 0.000 0.003 -1 5 0.216 0.003 14.843 14.844 Download Download
5 predict 100000 1 100 0.026 0.003 0.000 0.026 -1 5 0.009 0.000 2.872 2.873 Download Download
7 predict 100000 1000 100 2.207 0.009 0.000 0.002 1 100 0.268 0.014 8.245 8.256 Download Download
8 predict 100000 1 100 0.023 0.001 0.000 0.023 1 100 0.009 0.000 2.525 2.528 Download Download
10 predict 100000 1000 100 3.128 0.046 0.000 0.003 -1 100 0.267 0.002 11.698 11.698 Download Download
11 predict 100000 1 100 0.025 0.003 0.000 0.025 -1 100 0.009 0.000 2.756 2.757 Download Download
13 predict 100000 1000 100 2.191 0.062 0.000 0.002 1 5 0.228 0.011 9.591 9.602 Download Download
14 predict 100000 1 100 0.023 0.000 0.000 0.023 1 5 0.009 0.000 2.500 2.500 Download Download
16 predict 100000 1000 100 1.330 0.006 0.001 0.001 1 1 0.220 0.007 6.043 6.046 Download Download
17 predict 100000 1 100 0.021 0.000 0.000 0.021 1 1 0.009 0.000 2.400 2.401 Download Download
19 predict 100000 1000 2 1.958 0.031 0.000 0.002 -1 1 0.037 0.003 52.573 52.737 Download Download
20 predict 100000 1 2 0.006 0.004 0.000 0.006 -1 1 0.001 0.000 5.794 5.825 Download Download
22 predict 100000 1000 2 2.899 0.085 0.000 0.003 -1 5 0.042 0.003 69.003 69.163 Download Download
23 predict 100000 1 2 0.006 0.002 0.000 0.006 -1 5 0.001 0.000 5.955 5.982 Download Download
25 predict 100000 1000 2 2.101 0.004 0.000 0.002 1 100 0.092 0.006 22.735 22.780 Download Download
26 predict 100000 1 2 0.003 0.000 0.000 0.003 1 100 0.001 0.000 2.682 2.694 Download Download
28 predict 100000 1000 2 2.928 0.053 0.000 0.003 -1 100 0.092 0.005 31.783 31.838 Download Download
29 predict 100000 1 2 0.007 0.002 0.000 0.007 -1 100 0.001 0.000 6.252 6.302 Download Download
31 predict 100000 1000 2 2.112 0.003 0.000 0.002 1 5 0.037 0.001 57.513 57.553 Download Download
32 predict 100000 1 2 0.003 0.000 0.000 0.003 1 5 0.001 0.000 3.233 3.245 Download Download
34 predict 100000 1000 2 1.194 0.004 0.000 0.001 1 1 0.035 0.001 34.220 34.234 Download Download
35 predict 100000 1 2 0.002 0.000 0.000 0.002 1 1 0.001 0.000 2.518 2.528 Download Download

Profiling traces can be visualized using Perfetto UI.

KNeighborsClassifier (KD tree) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=kd_tree.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 10 3.464 0.036 0.023 0.0 -1 1 0.874 0.023 3.964 3.965 Download Download
3 fit 1000000 1000000 10 3.415 0.039 0.023 0.0 -1 5 0.874 0.018 3.908 3.909 Download Download
6 fit 1000000 1000000 10 3.445 0.025 0.023 0.0 1 100 0.895 0.032 3.848 3.851 Download Download
9 fit 1000000 1000000 10 3.452 0.100 0.023 0.0 -1 100 0.876 0.024 3.939 3.940 Download Download
12 fit 1000000 1000000 10 3.584 0.014 0.022 0.0 1 5 0.890 0.027 4.029 4.031 Download Download
15 fit 1000000 1000000 10 3.616 0.040 0.022 0.0 1 1 0.896 0.025 4.036 4.038 Download Download
18 fit 1000 1000 2 0.001 0.000 0.026 0.0 -1 1 0.001 0.000 0.546 0.546 Download Download
21 fit 1000 1000 2 0.001 0.000 0.021 0.0 -1 5 0.001 0.000 0.721 0.723 Download Download
24 fit 1000 1000 2 0.001 0.000 0.024 0.0 1 100 0.001 0.000 0.487 0.502 Download Download
27 fit 1000 1000 2 0.001 0.000 0.024 0.0 -1 100 0.002 0.001 0.414 0.463 Download Download
30 fit 1000 1000 2 0.001 0.000 0.026 0.0 1 5 0.001 0.000 0.471 0.476 Download Download
33 fit 1000 1000 2 0.001 0.000 0.026 0.0 1 1 0.001 0.000 0.531 0.533 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 10 0.502 0.012 0.000 0.001 -1 1 0.122 0.004 4.110 4.113 Download Download
2 predict 1000000 1 10 0.004 0.001 0.000 0.004 -1 1 0.000 0.000 11.481 11.826 Download Download
4 predict 1000000 1000 10 0.910 0.024 0.000 0.001 -1 5 0.217 0.003 4.201 4.201 Download Download
5 predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 5 0.000 0.000 8.633 9.075 Download Download
7 predict 1000000 1000 10 5.015 0.029 0.000 0.005 1 100 0.646 0.008 7.768 7.769 Download Download
8 predict 1000000 1 10 0.003 0.001 0.000 0.003 1 100 0.001 0.000 4.045 4.158 Download Download
10 predict 1000000 1000 10 2.904 0.022 0.000 0.003 -1 100 0.645 0.016 4.503 4.505 Download Download
11 predict 1000000 1 10 0.006 0.001 0.000 0.006 -1 100 0.001 0.000 9.023 9.334 Download Download
13 predict 1000000 1000 10 1.538 0.006 0.000 0.002 1 5 0.213 0.003 7.233 7.234 Download Download
14 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 5 0.000 0.000 3.523 3.650 Download Download
16 predict 1000000 1000 10 0.830 0.004 0.000 0.001 1 1 0.123 0.004 6.736 6.739 Download Download
17 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 1 0.000 0.000 3.945 4.106 Download Download
19 predict 1000 1000 2 0.030 0.003 0.001 0.000 -1 1 0.001 0.000 52.505 52.778 Download Download
20 predict 1000 1 2 0.003 0.000 0.000 0.003 -1 1 0.000 0.000 20.373 20.981 Download Download
22 predict 1000 1000 2 0.032 0.003 0.000 0.000 -1 5 0.001 0.000 28.530 29.064 Download Download
23 predict 1000 1 2 0.003 0.001 0.000 0.003 -1 5 0.000 0.000 16.509 18.736 Download Download
25 predict 1000 1000 2 0.044 0.002 0.000 0.000 1 100 0.006 0.001 7.137 7.174 Download Download
26 predict 1000 1 2 0.001 0.000 0.000 0.001 1 100 0.000 0.000 4.210 4.462 Download Download
28 predict 1000 1000 2 0.046 0.002 0.000 0.000 -1 100 0.006 0.001 7.063 7.111 Download Download
29 predict 1000 1 2 0.003 0.000 0.000 0.003 -1 100 0.000 0.000 12.795 14.049 Download Download
31 predict 1000 1000 2 0.025 0.000 0.001 0.000 1 5 0.001 0.000 24.431 24.734 Download Download
32 predict 1000 1 2 0.001 0.000 0.000 0.001 1 5 0.000 0.000 3.105 3.289 Download Download
34 predict 1000 1000 2 0.023 0.000 0.001 0.000 1 1 0.001 0.000 40.559 41.367 Download Download
35 predict 1000 1 2 0.001 0.000 0.000 0.001 1 1 0.000 0.000 4.102 4.290 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (tall) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=full, n_clusters=3, max_iter=30, n_init=1, tol=1e-16.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 2 0.617 0.015 0.026 0.0 30 random 0.524 0.024 1.176 1.178 Download Download
3 fit 1000000 1000000 2 0.685 0.022 0.023 0.0 30 k-means++ 0.558 0.020 1.227 1.228 Download Download
6 fit 1000000 1000000 100 5.896 0.488 0.136 0.0 30 random 3.069 0.054 1.921 1.921 Download Download
9 fit 1000000 1000000 100 5.720 0.162 0.140 0.0 30 k-means++ 3.309 0.071 1.729 1.729 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 2 0.000 0.0 0.063 0.0 30 random 0.0 0.0 0.815 0.858 Download Download
2 predict 1000000 1 2 0.000 0.0 0.000 0.0 30 random 0.0 0.0 1.243 1.316 Download Download
4 predict 1000000 1000 2 0.000 0.0 0.061 0.0 30 k-means++ 0.0 0.0 1.042 1.097 Download Download
5 predict 1000000 1 2 0.000 0.0 0.000 0.0 30 k-means++ 0.0 0.0 1.373 1.425 Download Download
7 predict 1000000 1000 100 0.001 0.0 1.550 0.0 30 random 0.0 0.0 1.399 1.449 Download Download
8 predict 1000000 1 100 0.000 0.0 0.004 0.0 30 random 0.0 0.0 1.299 1.330 Download Download
10 predict 1000000 1000 100 0.001 0.0 1.551 0.0 30 k-means++ 0.0 0.0 1.113 1.195 Download Download
11 predict 1000000 1 100 0.000 0.0 0.004 0.0 30 k-means++ 0.0 0.0 0.924 0.989 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (short) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=full, n_clusters=300, max_iter=20, n_init=1, tol=1e-16.

Mismatches between validation scores¶

WARNING! Mismatch between validation scores for 2 predictions (25.0%).
The observed differences can be found in the diff_adjusted_rand_scores column.
The chosen difference threshold is 0.01 for adjusted_rand_score.
The biggest difference is 0.033 for adjusted_rand_score.
See details in the dataframe below.
estimator library diff_adjusted_rand_scores function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter algorithm init max_iter n_clusters n_init tol adjusted_rand_score_sklearn mean_duration_sklearnex std_duration_sklearnex adjusted_rand_score_sklearnex speedup std_speedup
7 sklearn_KMeans_short sklearn 0.032069 predict 10000 1000 100 0.001769 0.000097 0.452136 0.000002 20 full random 20 300 1 1.000000e-16 0.293414 0.001389 0.000105 0.325483 1.273413 1.277036
10 sklearn_KMeans_short sklearn 0.032656 predict 10000 1000 100 0.001918 0.000438 0.416995 0.000002 20 full k-means++ 20 300 1 1.000000e-16 0.283247 0.001429 0.000088 0.315903 1.342707 1.345256

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 10000 10000 2 0.114 0.004 0.001 0.0 20 random 0.043 0.001 2.654 2.654 Download Download
3 fit 10000 10000 2 0.285 0.011 0.001 0.0 20 k-means++ 0.114 0.003 2.492 2.493 Download Download
6 fit 10000 10000 100 0.282 0.008 0.028 0.0 20 random 0.177 0.008 1.589 1.591 Download Download
9 fit 10000 10000 100 0.730 0.024 0.011 0.0 20 k-means++ 0.419 0.012 1.740 1.741 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 10000 1000 2 0.001 0.0 0.018 0.0 20 random 0.001 0.0 1.130 1.132 Download Download
2 predict 10000 1 2 0.000 0.0 0.000 0.0 20 random 0.000 0.0 1.340 1.369 Download Download
4 predict 10000 1000 2 0.001 0.0 0.018 0.0 20 k-means++ 0.001 0.0 1.048 1.051 Download Download
5 predict 10000 1 2 0.000 0.0 0.000 0.0 20 k-means++ 0.000 0.0 1.393 1.436 Download Download
7 predict 10000 1000 100 0.002 0.0 0.452 0.0 20 random 0.001 0.0 1.273 1.277 Download Download
8 predict 10000 1 100 0.000 0.0 0.003 0.0 20 random 0.000 0.0 1.222 1.243 Download Download
10 predict 10000 1000 100 0.002 0.0 0.417 0.0 20 k-means++ 0.001 0.0 1.343 1.345 Download Download
11 predict 10000 1 100 0.000 0.0 0.003 0.0 20 k-means++ 0.000 0.0 1.265 1.306 Download Download

Profiling traces can be visualized using Perfetto UI.

Logistic Regression ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: penalty=l2, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1.0, class_weight=nan, random_state=nan, solver=lbfgs, max_iter=100, multi_class=auto, verbose=0, warm_start=False, n_jobs=nan, l1_ratio=nan.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 100 12.070 0.074 0.066 0.000 [20] 2.151 0.026 5.611 5.611 Download Download
3 fit 1000 1000 10000 0.859 0.053 0.093 0.001 [27] 0.826 0.048 1.039 1.041 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 100 0.000 0.0 2.418 0.0 [20] 0.001 0.001 0.430 0.709 Download Download
2 predict 1000000 1 100 0.000 0.0 0.011 0.0 [20] 0.000 0.000 0.302 0.312 Download Download
4 predict 1000 100 10000 0.002 0.0 4.171 0.0 [27] 0.006 0.001 0.309 0.314 Download Download
5 predict 1000 1 10000 0.000 0.0 0.841 0.0 [27] 0.002 0.000 0.055 0.056 Download Download

Profiling traces can be visualized using Perfetto UI.

LinearRegression ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters:

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 1.557 0.020 0.051 0.002 True True deprecated False 2.004 0.149 0.777 0.779 Download Download
3 fit 1000000 1000000 100 8.948 0.603 0.089 0.000 True True deprecated False 0.240 0.012 37.274 37.321 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.011 0.0 7.241 0.0 True True deprecated False 0.019 0.001 0.573 0.573 Download Download
2 predict 1000 10 10000 0.000 0.0 4.869 0.0 True True deprecated False 0.000 0.000 0.451 0.463 Download Download
4 predict 1000000 1000 100 0.000 0.0 5.235 0.0 True True deprecated False 0.001 0.000 0.274 0.298 Download Download
5 predict 1000000 10 100 0.000 0.0 0.114 0.0 True True deprecated False 0.000 0.000 0.392 0.402 Download Download

Profiling traces can be visualized using Perfetto UI.

Ridge ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: alpha=1e-06.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 0.203 0.003 0.394 0.0 0.210 0.001 0.967 0.967 Download Download
3 fit 1000000 1000000 100 1.202 0.014 0.666 0.0 0.274 0.007 4.381 4.383 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.011 0.001 7.183 0.0 0.019 0.000 0.583 0.583 Download Download
2 predict 1000 10 10000 0.000 0.000 4.515 0.0 0.001 0.001 0.241 0.414 Download Download
4 predict 1000000 1000 100 0.000 0.000 4.902 0.0 0.000 0.000 0.475 0.499 Download Download
5 predict 1000000 10 100 0.000 0.000 0.121 0.0 0.000 0.000 0.373 0.389 Download Download

Profiling traces can be visualized using Perfetto UI.

TSNE ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters:

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter angle early_exaggeration init learning_rate method metric min_grad_norm n_components n_iter_without_progress perplexity square_distances verbose mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 3 4.214 0.222 0.0 0.004 1000 0.5 12.0 warn warn barnes_hut euclidean 0.0 2 300 30.0 legacy 0 4.323 0.412 0.975 0.979 Download Download

Profiling traces can be visualized using Perfetto UI.

PCA ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: n_components=10.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 0.518 0.014 0.154 0.0 0.034 0.006 15.253 15.498 Download Download
1 fit 10000 10000 1000 0.492 0.088 0.163 0.0 0.242 0.007 2.030 2.031 Download Download

Profiling traces can be visualized using Perfetto UI.

DBSCAN ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: eps=173, min_samples=5.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 10000 10000 50 1.245 0.008 0.003 0.0 0.218 0.006 5.716 5.719 Download Download

Profiling traces can be visualized using Perfetto UI.

Benchmark environment information¶

System¶

python 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0]
executable /usr/share/miniconda/envs/sklbench/bin/python
machine Linux-5.11.0-1028-azure-x86_64-with-glibc2.10

Dependencies¶

version
pip 22.0.4
setuptools 60.9.3
sklearn 1.0.2
numpy 1.22.3
scipy 1.8.0
Cython None
pandas 1.4.1
matplotlib 3.5.1
joblib 1.1.0
threadpoolctl 3.1.0

Threadpool¶

user_api internal_api prefix filepath version threading_layer architecture num_threads
0 blas openblas libopenblas /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so 0.3.18 pthreads SkylakeX 2
1 openmp openmp libgomp /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 None NaN NaN 2

CPU count¶

cpu_count 2
physical_cpu_count 2