from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_results_directory
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
results_dir = default_results_directory()
# Parameters
results_dir = "./results/local/20220314T213129/"
results_dir = Path(results_dir)
reporting = HpMatchReporting(other_library="onnx", config="config.yml", log_scale=True, results_dir=results_dir)
reporting.make_report()
We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up
time scikit-learn / time onnx
. For instance, a speed-up of 2 means that onnx is twice as fast as scikit-learn for a given set of parameters and a given dataset.
onnx (1.11.0) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=brute
.
predict
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | accuracy_score_sklearn | mean_duration_onnx | std_duration_onnx | accuracy_score_onnx | speedup | std_speedup | sklearn_profiling | onnx_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | predict | 100000 | 1000 | 100 | 2.678 | 0.258 | 0.000 | 0.003 | -1 | 1 | 0.676 | 15.327 | 0.020 | 0.676 | 0.175 | 0.175 | Download | Download |
1 | predict | 100000 | 1 | 100 | 0.027 | 0.003 | 0.000 | 0.027 | -1 | 1 | 0.000 | 0.293 | 0.001 | 0.000 | 0.091 | 0.091 | Download | Download |
2 | predict | 100000 | 1000 | 100 | 3.108 | 0.102 | 0.000 | 0.003 | -1 | 5 | 0.743 | 15.225 | 0.022 | 0.743 | 0.204 | 0.204 | Download | Download |
3 | predict | 100000 | 1 | 100 | 0.029 | 0.003 | 0.000 | 0.029 | -1 | 5 | 1.000 | 0.293 | 0.002 | 1.000 | 0.098 | 0.098 | Download | Download |
4 | predict | 100000 | 1000 | 100 | 2.000 | 0.007 | 0.000 | 0.002 | 1 | 100 | 0.846 | 15.257 | 0.048 | 0.846 | 0.131 | 0.131 | Download | Download |
5 | predict | 100000 | 1 | 100 | 0.026 | 0.000 | 0.000 | 0.026 | 1 | 100 | 1.000 | 0.292 | 0.002 | 1.000 | 0.088 | 0.088 | Download | Download |
6 | predict | 100000 | 1000 | 100 | 2.824 | 0.044 | 0.000 | 0.003 | -1 | 100 | 0.846 | 15.188 | 0.048 | 0.846 | 0.186 | 0.186 | Download | Download |
7 | predict | 100000 | 1 | 100 | 0.031 | 0.004 | 0.000 | 0.031 | -1 | 100 | 1.000 | 0.292 | 0.002 | 1.000 | 0.106 | 0.106 | Download | Download |
8 | predict | 100000 | 1000 | 100 | 1.988 | 0.007 | 0.000 | 0.002 | 1 | 5 | 0.743 | 15.212 | 0.050 | 0.743 | 0.131 | 0.131 | Download | Download |
9 | predict | 100000 | 1 | 100 | 0.025 | 0.000 | 0.000 | 0.025 | 1 | 5 | 1.000 | 0.291 | 0.002 | 1.000 | 0.086 | 0.086 | Download | Download |
10 | predict | 100000 | 1000 | 100 | 1.289 | 0.008 | 0.001 | 0.001 | 1 | 1 | 0.676 | 15.250 | 0.049 | 0.676 | 0.085 | 0.085 | Download | Download |
11 | predict | 100000 | 1 | 100 | 0.024 | 0.000 | 0.000 | 0.024 | 1 | 1 | 0.000 | 0.293 | 0.003 | 0.000 | 0.084 | 0.084 | Download | Download |
12 | predict | 100000 | 1000 | 2 | 1.876 | 0.034 | 0.000 | 0.002 | -1 | 1 | 0.845 | 3.713 | 0.011 | 0.845 | 0.505 | 0.505 | Download | Download |
13 | predict | 100000 | 1 | 2 | 0.005 | 0.001 | 0.000 | 0.005 | -1 | 1 | 1.000 | 0.213 | 0.002 | 1.000 | 0.022 | 0.022 | Download | Download |
14 | predict | 100000 | 1000 | 2 | 2.640 | 0.026 | 0.000 | 0.003 | -1 | 5 | 0.883 | 3.661 | 0.013 | 0.883 | 0.721 | 0.721 | Download | Download |
15 | predict | 100000 | 1 | 2 | 0.009 | 0.004 | 0.000 | 0.009 | -1 | 5 | 1.000 | 0.215 | 0.004 | 1.000 | 0.041 | 0.041 | Download | Download |
16 | predict | 100000 | 1000 | 2 | 1.934 | 0.005 | 0.000 | 0.002 | 1 | 100 | 0.887 | 3.734 | 0.013 | 0.887 | 0.518 | 0.518 | Download | Download |
17 | predict | 100000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | 1 | 100 | 1.000 | 0.211 | 0.002 | 1.000 | 0.014 | 0.014 | Download | Download |
18 | predict | 100000 | 1000 | 2 | 2.677 | 0.025 | 0.000 | 0.003 | -1 | 100 | 0.887 | 3.486 | 0.169 | 0.887 | 0.768 | 0.769 | Download | Download |
19 | predict | 100000 | 1 | 2 | 0.007 | 0.004 | 0.000 | 0.007 | -1 | 100 | 1.000 | 0.189 | 0.003 | 1.000 | 0.035 | 0.035 | Download | Download |
20 | predict | 100000 | 1000 | 2 | 1.826 | 0.019 | 0.000 | 0.002 | 1 | 5 | 0.883 | 3.522 | 0.170 | 0.883 | 0.518 | 0.519 | Download | Download |
21 | predict | 100000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | 1 | 5 | 1.000 | 0.213 | 0.002 | 1.000 | 0.013 | 0.013 | Download | Download |
22 | predict | 100000 | 1000 | 2 | 1.160 | 0.005 | 0.000 | 0.001 | 1 | 1 | 0.845 | 3.719 | 0.010 | 0.845 | 0.312 | 0.312 | Download | Download |
23 | predict | 100000 | 1 | 2 | 0.002 | 0.000 | 0.000 | 0.002 | 1 | 1 | 1.000 | 0.212 | 0.003 | 1.000 | 0.009 | 0.009 | Download | Download |
onnx (1.11.0) vs. scikit-learn (1.0.2)
All estimators share the following parameters: learning_rate=0.01
, n_iter_no_change=10.0
, max_leaf_nodes=100.0
, max_bins=255.0
, min_samples_leaf=100.0
, max_iter=300.0
.
predict
function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | accuracy_score_sklearn | mean_duration_onnx | std_duration_onnx | accuracy_score_onnx | speedup | std_speedup | sklearn_profiling | onnx_profiling | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | predict | 100000 | 1000 | 100 | 0.13 | 0.013 | 0.006 | 0.0 | 0.795 | 0.516 | 0.006 | 0.795 | 0.252 | 0.252 | Download | Download |
python | 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0] |
---|---|
executable | /usr/share/miniconda/envs/sklbench/bin/python |
machine | Linux-5.11.0-1028-azure-x86_64-with-glibc2.10 |
version | |
---|---|
pip | 22.0.4 |
setuptools | 60.9.3 |
sklearn | 1.0.2 |
numpy | 1.22.3 |
scipy | 1.8.0 |
Cython | None |
pandas | 1.4.1 |
matplotlib | 3.5.1 |
joblib | 1.1.0 |
threadpoolctl | 3.1.0 |
user_api | internal_api | prefix | filepath | version | threading_layer | architecture | num_threads | |
---|---|---|---|---|---|---|---|---|
0 | blas | openblas | libopenblas | /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so | 0.3.18 | pthreads | SkylakeX | 2 |
1 | openmp | openmp | libgomp | /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 | None | NaN | NaN | 2 |
cpu_count | 2 |
---|---|
physical_cpu_count | 2 |