In [1]:
from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_results_directory
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

scikit-learn-intelex (Intel® oneAPI) vs. scikit-learn¶

In [2]:
results_dir = default_results_directory()
In [3]:
# Parameters
results_dir = "./results/local/20220314T213129/"
In [4]:
results_dir = Path(results_dir)
In [5]:
reporting = HpMatchReporting(other_library="sklearnex", config="config.yml", log_scale=True, results_dir=results_dir)
reporting.make_report()

We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up time scikit-learn / time sklearnex. For instance, a speed-up of 2 means that sklearnex is twice as fast as scikit-learn for a given set of parameters and a given dataset.

¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=brute.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 1.365 0.023 0.059 0.0 -1 1 0.056 0.008 24.514 24.752 Download Download
3 fit 100000 100000 100 1.317 0.023 0.061 0.0 -1 5 0.051 0.000 25.824 25.825 Download Download
6 fit 100000 100000 100 1.312 0.018 0.061 0.0 1 100 0.049 0.000 26.795 26.796 Download Download
9 fit 100000 100000 100 1.305 0.017 0.061 0.0 -1 100 0.049 0.000 26.800 26.800 Download Download
12 fit 100000 100000 100 1.306 0.006 0.061 0.0 1 5 0.049 0.000 26.791 26.791 Download Download
15 fit 100000 100000 100 1.319 0.031 0.061 0.0 1 1 0.049 0.001 26.909 26.914 Download Download
18 fit 100000 100000 2 0.051 0.001 0.031 0.0 -1 1 0.008 0.000 6.463 6.466 Download Download
21 fit 100000 100000 2 0.051 0.000 0.031 0.0 -1 5 0.008 0.000 6.284 6.286 Download Download
24 fit 100000 100000 2 0.051 0.001 0.031 0.0 1 100 0.008 0.000 6.338 6.340 Download Download
27 fit 100000 100000 2 0.051 0.000 0.031 0.0 -1 100 0.008 0.000 6.438 6.439 Download Download
30 fit 100000 100000 2 0.045 0.000 0.035 0.0 1 5 0.008 0.000 5.652 5.653 Download Download
33 fit 100000 100000 2 0.050 0.000 0.032 0.0 1 1 0.008 0.000 6.269 6.270 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 100000 1000 100 2.678 0.258 0.000 0.003 -1 1 0.197 0.009 13.583 13.598 Download Download
2 predict 100000 1 100 0.027 0.003 0.000 0.027 -1 1 0.010 0.000 2.601 2.603 Download Download
4 predict 100000 1000 100 3.108 0.102 0.000 0.003 -1 5 0.201 0.011 15.453 15.474 Download Download
5 predict 100000 1 100 0.029 0.003 0.000 0.029 -1 5 0.010 0.000 2.866 2.867 Download Download
7 predict 100000 1000 100 2.000 0.007 0.000 0.002 1 100 0.243 0.009 8.242 8.248 Download Download
8 predict 100000 1 100 0.026 0.000 0.000 0.026 1 100 0.010 0.000 2.549 2.549 Download Download
10 predict 100000 1000 100 2.824 0.044 0.000 0.003 -1 100 0.236 0.002 11.946 11.947 Download Download
11 predict 100000 1 100 0.031 0.004 0.000 0.031 -1 100 0.010 0.000 3.105 3.105 Download Download
13 predict 100000 1000 100 1.988 0.007 0.000 0.002 1 5 0.195 0.001 10.171 10.171 Download Download
14 predict 100000 1 100 0.025 0.000 0.000 0.025 1 5 0.010 0.000 2.452 2.452 Download Download
16 predict 100000 1000 100 1.289 0.008 0.001 0.001 1 1 0.196 0.002 6.583 6.584 Download Download
17 predict 100000 1 100 0.024 0.000 0.000 0.024 1 1 0.010 0.000 2.447 2.448 Download Download
19 predict 100000 1000 2 1.876 0.034 0.000 0.002 -1 1 0.030 0.000 62.887 62.888 Download Download
20 predict 100000 1 2 0.005 0.001 0.000 0.005 -1 1 0.001 0.001 4.252 5.023 Download Download
22 predict 100000 1000 2 2.640 0.026 0.000 0.003 -1 5 0.031 0.000 85.082 85.090 Download Download
23 predict 100000 1 2 0.009 0.004 0.000 0.009 -1 5 0.001 0.000 10.545 10.640 Download Download
25 predict 100000 1000 2 1.934 0.005 0.000 0.002 1 100 0.070 0.001 27.726 27.731 Download Download
26 predict 100000 1 2 0.003 0.000 0.000 0.003 1 100 0.001 0.000 3.239 3.255 Download Download
28 predict 100000 1000 2 2.677 0.025 0.000 0.003 -1 100 0.068 0.000 39.217 39.217 Download Download
29 predict 100000 1 2 0.007 0.004 0.000 0.007 -1 100 0.001 0.000 7.121 7.148 Download Download
31 predict 100000 1000 2 1.826 0.019 0.000 0.002 1 5 0.031 0.001 58.374 58.429 Download Download
32 predict 100000 1 2 0.003 0.000 0.000 0.003 1 5 0.001 0.000 3.264 3.279 Download Download
34 predict 100000 1000 2 1.160 0.005 0.000 0.001 1 1 0.030 0.000 39.255 39.257 Download Download
35 predict 100000 1 2 0.002 0.000 0.000 0.002 1 1 0.001 0.000 2.219 2.235 Download Download

¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=kd_tree.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 10 2.937 0.018 0.027 0.0 -1 1 0.777 0.023 3.779 3.780 Download Download
3 fit 1000000 1000000 10 3.192 0.042 0.025 0.0 -1 5 0.763 0.008 4.183 4.184 Download Download
6 fit 1000000 1000000 10 3.205 0.039 0.025 0.0 1 100 0.763 0.007 4.198 4.198 Download Download
9 fit 1000000 1000000 10 3.164 0.040 0.025 0.0 -1 100 0.764 0.012 4.140 4.140 Download Download
12 fit 1000000 1000000 10 3.109 0.041 0.026 0.0 1 5 0.780 0.018 3.987 3.988 Download Download
15 fit 1000000 1000000 10 3.092 0.046 0.026 0.0 1 1 0.779 0.026 3.970 3.972 Download Download
18 fit 1000 1000 2 0.001 0.000 0.031 0.0 -1 1 0.001 0.000 0.541 0.541 Download Download
21 fit 1000 1000 2 0.000 0.000 0.034 0.0 -1 5 0.001 0.000 0.496 0.497 Download Download
24 fit 1000 1000 2 0.000 0.000 0.033 0.0 1 100 0.001 0.000 0.514 0.516 Download Download
27 fit 1000 1000 2 0.000 0.000 0.033 0.0 -1 100 0.001 0.000 0.523 0.525 Download Download
30 fit 1000 1000 2 0.001 0.000 0.030 0.0 1 5 0.001 0.000 0.539 0.541 Download Download
33 fit 1000 1000 2 0.001 0.000 0.031 0.0 1 1 0.001 0.000 0.554 0.555 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 10 0.451 0.009 0.000 0.000 -1 1 0.117 0.002 3.856 3.856 Download Download
2 predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 1 0.000 0.000 9.555 10.163 Download Download
4 predict 1000000 1000 10 0.855 0.007 0.000 0.001 -1 5 0.206 0.005 4.145 4.146 Download Download
5 predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 5 0.000 0.000 8.164 8.741 Download Download
7 predict 1000000 1000 10 4.926 0.024 0.000 0.005 1 100 0.609 0.003 8.087 8.087 Download Download
8 predict 1000000 1 10 0.002 0.001 0.000 0.002 1 100 0.001 0.000 4.032 4.201 Download Download
10 predict 1000000 1000 10 2.797 0.017 0.000 0.003 -1 100 0.612 0.006 4.570 4.570 Download Download
11 predict 1000000 1 10 0.004 0.001 0.000 0.004 -1 100 0.001 0.000 7.509 7.896 Download Download
13 predict 1000000 1000 10 1.444 0.013 0.000 0.001 1 5 0.207 0.003 6.966 6.966 Download Download
14 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 5 0.000 0.000 3.554 3.808 Download Download
16 predict 1000000 1000 10 0.763 0.012 0.000 0.001 1 1 0.122 0.008 6.263 6.277 Download Download
17 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 1 0.000 0.000 3.567 3.794 Download Download
19 predict 1000 1000 2 0.025 0.005 0.001 0.000 -1 1 0.000 0.000 55.485 56.025 Download Download
20 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 1 0.000 0.000 15.402 15.825 Download Download
22 predict 1000 1000 2 0.023 0.001 0.001 0.000 -1 5 0.001 0.000 28.613 28.847 Download Download
23 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 5 0.000 0.000 15.341 15.837 Download Download
25 predict 1000 1000 2 0.031 0.001 0.001 0.000 1 100 0.005 0.000 6.306 6.319 Download Download
26 predict 1000 1 2 0.001 0.000 0.000 0.001 1 100 0.000 0.000 3.738 3.931 Download Download
28 predict 1000 1000 2 0.033 0.001 0.000 0.000 -1 100 0.005 0.000 6.734 6.752 Download Download
29 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 100 0.000 0.000 14.048 14.976 Download Download
31 predict 1000 1000 2 0.021 0.000 0.001 0.000 1 5 0.001 0.000 28.948 29.010 Download Download
32 predict 1000 1 2 0.001 0.000 0.000 0.001 1 5 0.000 0.000 4.212 4.472 Download Download
34 predict 1000 1000 2 0.020 0.000 0.001 0.000 1 1 0.000 0.000 41.872 42.621 Download Download
35 predict 1000 1 2 0.001 0.000 0.000 0.001 1 1 0.000 0.000 4.236 4.406 Download Download

¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=full, n_clusters=3, max_iter=30, n_init=1, tol=1e-16.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 2 0.497 0.002 0.032 0.0 30 random 0.417 0.019 1.194 1.195 Download Download
3 fit 1000000 1000000 2 0.560 0.013 0.029 0.0 30 k-means++ 0.443 0.019 1.265 1.266 Download Download
6 fit 1000000 1000000 100 5.381 0.358 0.149 0.0 30 random 3.087 0.030 1.743 1.743 Download Download
9 fit 1000000 1000000 100 5.405 0.064 0.148 0.0 30 k-means++ 3.271 0.033 1.652 1.652 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 2 0.0 0.0 0.071 0.0 30 random 0.0 0.0 1.037 1.133 Download Download
2 predict 1000000 1 2 0.0 0.0 0.000 0.0 30 random 0.0 0.0 1.288 1.342 Download Download
4 predict 1000000 1000 2 0.0 0.0 0.069 0.0 30 k-means++ 0.0 0.0 1.089 1.192 Download Download
5 predict 1000000 1 2 0.0 0.0 0.000 0.0 30 k-means++ 0.0 0.0 1.266 1.307 Download Download
7 predict 1000000 1000 100 0.0 0.0 1.708 0.0 30 random 0.0 0.0 1.376 1.471 Download Download
8 predict 1000000 1 100 0.0 0.0 0.005 0.0 30 random 0.0 0.0 1.116 1.144 Download Download
10 predict 1000000 1000 100 0.0 0.0 1.773 0.0 30 k-means++ 0.0 0.0 1.366 1.479 Download Download
11 predict 1000000 1 100 0.0 0.0 0.005 0.0 30 k-means++ 0.0 0.0 1.052 1.097 Download Download

¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=full, n_clusters=300, max_iter=20, n_init=1, tol=1e-16.

Mismatches between validation scores¶

WARNING! Mismatch between validation scores for 2 predictions (25.0%).
The observed differences can be found in the diff_adjusted_rand_scores column.
The chosen difference threshold is 0.01 for adjusted_rand_score.
The biggest difference is 0.033 for adjusted_rand_score.
See details in the dataframe below.
estimator library diff_adjusted_rand_scores function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter algorithm init max_iter n_clusters n_init tol adjusted_rand_score_sklearn mean_duration_sklearnex std_duration_sklearnex adjusted_rand_score_sklearnex speedup std_speedup
7 sklearn_KMeans_short sklearn 0.032069 predict 10000 1000 100 0.001474 0.000238 0.542790 0.000001 20 full random 20 300 1 1.000000e-16 0.293414 0.001218 0.000108 0.325483 1.210159 1.214892
10 sklearn_KMeans_short sklearn 0.032656 predict 10000 1000 100 0.001430 0.000113 0.559263 0.000001 20 full k-means++ 20 300 1 1.000000e-16 0.283247 0.001235 0.000110 0.315903 1.157915 1.162495

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 10000 10000 2 0.090 0.004 0.002 0.0 20 random 0.038 0.002 2.373 2.375 Download Download
3 fit 10000 10000 2 0.217 0.001 0.001 0.0 20 k-means++ 0.090 0.002 2.406 2.407 Download Download
6 fit 10000 10000 100 0.220 0.003 0.036 0.0 20 random 0.152 0.003 1.447 1.448 Download Download
9 fit 10000 10000 100 0.604 0.008 0.013 0.0 20 k-means++ 0.371 0.007 1.627 1.628 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 10000 1000 2 0.001 0.0 0.023 0.0 20 random 0.001 0.0 0.957 0.962 Download Download
2 predict 10000 1 2 0.000 0.0 0.000 0.0 20 random 0.000 0.0 1.330 1.359 Download Download
4 predict 10000 1000 2 0.001 0.0 0.023 0.0 20 k-means++ 0.001 0.0 0.992 0.996 Download Download
5 predict 10000 1 2 0.000 0.0 0.000 0.0 20 k-means++ 0.000 0.0 1.552 1.586 Download Download
7 predict 10000 1000 100 0.001 0.0 0.543 0.0 20 random 0.001 0.0 1.210 1.215 Download Download
8 predict 10000 1 100 0.000 0.0 0.003 0.0 20 random 0.000 0.0 1.279 1.289 Download Download
10 predict 10000 1000 100 0.001 0.0 0.559 0.0 20 k-means++ 0.001 0.0 1.158 1.162 Download Download
11 predict 10000 1 100 0.000 0.0 0.003 0.0 20 k-means++ 0.000 0.0 1.297 1.306 Download Download

¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: penalty=l2, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1.0, class_weight=nan, random_state=nan, solver=lbfgs, max_iter=100, multi_class=auto, verbose=0, warm_start=False, n_jobs=nan, l1_ratio=nan.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 100 10.944 0.038 0.073 0.000 [20] 2.161 0.016 5.066 5.066 Download Download
3 fit 1000 1000 10000 0.816 0.047 0.098 0.001 [27] 0.889 0.050 0.918 0.919 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 100 0.000 0.0 2.821 0.0 [20] 0.001 0.001 0.321 0.507 Download Download
2 predict 1000000 1 100 0.000 0.0 0.014 0.0 [20] 0.000 0.000 0.244 0.256 Download Download
4 predict 1000 100 10000 0.002 0.0 4.589 0.0 [27] 0.005 0.001 0.345 0.351 Download Download
5 predict 1000 1 10000 0.000 0.0 1.051 0.0 [27] 0.001 0.000 0.058 0.059 Download Download

¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters:

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 1.355 0.007 0.059 0.001 True True deprecated False 1.546 0.014 0.876 0.876 Download Download
3 fit 1000000 1000000 100 9.268 0.656 0.086 0.000 True True deprecated False 0.206 0.003 44.963 44.968 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.013 0.0 6.387 0.0 True True deprecated False 0.020 0.0 0.629 0.629 Download Download
2 predict 1000 10 10000 0.000 0.0 5.429 0.0 True True deprecated False 0.000 0.0 0.487 0.502 Download Download
4 predict 1000000 1000 100 0.000 0.0 5.130 0.0 True True deprecated False 0.001 0.0 0.292 0.331 Download Download
5 predict 1000000 10 100 0.000 0.0 0.146 0.0 True True deprecated False 0.000 0.0 0.353 0.368 Download Download

¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: alpha=1e-06.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 0.186 0.002 0.431 0.0 0.194 0.002 0.959 0.959 Download Download
3 fit 1000000 1000000 100 1.146 0.011 0.698 0.0 0.250 0.004 4.585 4.585 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.012 0.0 6.797 0.0 0.021 0.001 0.563 0.563 Download Download
2 predict 1000 10 10000 0.000 0.0 5.383 0.0 0.001 0.001 0.291 0.429 Download Download
4 predict 1000000 1000 100 0.000 0.0 5.281 0.0 0.000 0.000 0.476 0.508 Download Download
5 predict 1000000 10 100 0.000 0.0 0.142 0.0 0.000 0.000 0.388 0.394 Download Download

¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters:

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter angle early_exaggeration init learning_rate method metric min_grad_norm n_components n_iter_without_progress perplexity square_distances verbose mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 3 3.531 0.2 0.0 0.004 1000 0.5 12.0 warn warn barnes_hut euclidean 0.0 2 300 30.0 legacy 0 3.624 0.334 0.974 0.978 Download Download

¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: n_components=10.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 0.502 0.008 0.159 0.0 0.032 0.004 15.673 15.810 Download Download
1 fit 10000 10000 1000 0.432 0.004 0.185 0.0 0.205 0.005 2.104 2.104 Download Download

Benchmark environment information¶

System¶

python 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0]
executable /usr/share/miniconda/envs/sklbench/bin/python
machine Linux-5.11.0-1028-azure-x86_64-with-glibc2.10

Dependencies¶

version
pip 22.0.4
setuptools 60.9.3
sklearn 1.0.2
numpy 1.22.3
scipy 1.8.0
Cython None
pandas 1.4.1
matplotlib 3.5.1
joblib 1.1.0
threadpoolctl 3.1.0

Threadpool¶

user_api internal_api prefix filepath version threading_layer architecture num_threads
0 blas openblas libopenblas /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so 0.3.18 pthreads SkylakeX 2
1 openmp openmp libgomp /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 None NaN NaN 2

CPU count¶

cpu_count 2
physical_cpu_count 2