In [1]:
from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_results_directory
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

scikit-learn-intelex (Intel® oneAPI) vs. scikit-learn¶

In [2]:
results_dir = default_results_directory()
In [3]:
# Parameters
results_dir = "./results/local/20220315T132808/"
In [4]:
results_dir = Path(results_dir)
In [5]:
reporting = HpMatchReporting(other_library="sklearnex", config="config.yml", log_scale=True, results_dir=results_dir)
reporting.make_report()

We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up time scikit-learn / time sklearnex. For instance, a speed-up of 2 means that sklearnex is twice as fast as scikit-learn for a given set of parameters and a given dataset.

KNeighborsClassifier (brute force) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=brute.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 1.293 0.021 0.062 0.0 -1 1 0.051 0.006 25.476 25.668 Download Download
3 fit 100000 100000 100 1.303 0.023 0.061 0.0 -1 5 0.049 0.000 26.637 26.637 Download Download
6 fit 100000 100000 100 1.290 0.014 0.062 0.0 1 100 0.049 0.000 26.363 26.363 Download Download
9 fit 100000 100000 100 1.293 0.012 0.062 0.0 -1 100 0.049 0.000 26.486 26.486 Download Download
12 fit 100000 100000 100 1.290 0.022 0.062 0.0 1 5 0.049 0.000 26.426 26.426 Download Download
15 fit 100000 100000 100 1.302 0.022 0.061 0.0 1 1 0.049 0.000 26.594 26.594 Download Download
18 fit 100000 100000 2 0.052 0.001 0.031 0.0 -1 1 0.009 0.000 5.942 5.944 Download Download
21 fit 100000 100000 2 0.052 0.001 0.031 0.0 -1 5 0.009 0.000 5.857 5.859 Download Download
24 fit 100000 100000 2 0.052 0.000 0.031 0.0 1 100 0.009 0.000 6.143 6.144 Download Download
27 fit 100000 100000 2 0.051 0.000 0.031 0.0 -1 100 0.009 0.000 5.713 5.714 Download Download
30 fit 100000 100000 2 0.051 0.000 0.031 0.0 1 5 0.009 0.000 5.665 5.666 Download Download
33 fit 100000 100000 2 0.055 0.003 0.029 0.0 1 1 0.009 0.000 6.323 6.324 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 100000 1000 100 2.471 0.234 0.000 0.002 -1 1 0.178 0.007 13.916 13.926 Download Download
2 predict 100000 1 100 0.023 0.003 0.000 0.023 -1 1 0.009 0.000 2.535 2.535 Download Download
4 predict 100000 1000 100 3.125 0.066 0.000 0.003 -1 5 0.177 0.001 17.687 17.687 Download Download
5 predict 100000 1 100 0.024 0.003 0.000 0.024 -1 5 0.009 0.000 2.640 2.640 Download Download
7 predict 100000 1000 100 1.939 0.006 0.000 0.002 1 100 0.212 0.001 9.134 9.134 Download Download
8 predict 100000 1 100 0.021 0.000 0.000 0.021 1 100 0.009 0.000 2.170 2.171 Download Download
10 predict 100000 1000 100 2.830 0.049 0.000 0.003 -1 100 0.216 0.011 13.098 13.114 Download Download
11 predict 100000 1 100 0.025 0.004 0.000 0.025 -1 100 0.009 0.000 2.648 2.649 Download Download
13 predict 100000 1000 100 1.927 0.006 0.000 0.002 1 5 0.176 0.002 10.917 10.917 Download Download
14 predict 100000 1 100 0.021 0.000 0.000 0.021 1 5 0.009 0.000 2.253 2.254 Download Download
16 predict 100000 1000 100 1.227 0.004 0.001 0.001 1 1 0.175 0.001 7.017 7.017 Download Download
17 predict 100000 1 100 0.023 0.006 0.000 0.023 1 1 0.009 0.000 2.419 2.419 Download Download
19 predict 100000 1000 2 1.901 0.022 0.000 0.002 -1 1 0.026 0.000 72.475 72.482 Download Download
20 predict 100000 1 2 0.006 0.004 0.000 0.006 -1 1 0.001 0.000 8.226 8.283 Download Download
22 predict 100000 1000 2 2.698 0.038 0.000 0.003 -1 5 0.027 0.000 99.309 99.311 Download Download
23 predict 100000 1 2 0.005 0.000 0.000 0.005 -1 5 0.001 0.000 7.298 7.352 Download Download
25 predict 100000 1000 2 1.905 0.011 0.000 0.002 1 100 0.062 0.001 30.877 30.882 Download Download
26 predict 100000 1 2 0.003 0.000 0.000 0.003 1 100 0.001 0.000 3.199 3.226 Download Download
28 predict 100000 1000 2 2.660 0.025 0.000 0.003 -1 100 0.061 0.001 43.318 43.319 Download Download
29 predict 100000 1 2 0.007 0.004 0.000 0.007 -1 100 0.001 0.000 7.586 7.674 Download Download
31 predict 100000 1000 2 1.887 0.006 0.000 0.002 1 5 0.027 0.000 68.983 68.989 Download Download
32 predict 100000 1 2 0.003 0.000 0.000 0.003 1 5 0.001 0.000 3.515 3.550 Download Download
34 predict 100000 1000 2 1.125 0.007 0.000 0.001 1 1 0.026 0.000 42.609 42.610 Download Download
35 predict 100000 1 2 0.002 0.000 0.000 0.002 1 1 0.001 0.000 2.485 2.497 Download Download

Profiling traces can be visualized using Perfetto UI.

KNeighborsClassifier (KD tree) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=kd_tree.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 10 3.427 0.074 0.023 0.0 -1 1 0.830 0.017 4.130 4.131 Download Download
3 fit 1000000 1000000 10 3.352 0.059 0.024 0.0 -1 5 0.822 0.016 4.080 4.080 Download Download
6 fit 1000000 1000000 10 3.306 0.055 0.024 0.0 1 100 0.829 0.012 3.989 3.989 Download Download
9 fit 1000000 1000000 10 3.344 0.058 0.024 0.0 -1 100 0.822 0.006 4.069 4.069 Download Download
12 fit 1000000 1000000 10 3.493 0.060 0.023 0.0 1 5 0.814 0.008 4.289 4.289 Download Download
15 fit 1000000 1000000 10 3.535 0.078 0.023 0.0 1 1 0.833 0.025 4.246 4.248 Download Download
18 fit 1000 1000 2 0.001 0.000 0.031 0.0 -1 1 0.001 0.000 0.596 0.598 Download Download
21 fit 1000 1000 2 0.001 0.000 0.030 0.0 -1 5 0.001 0.000 0.593 0.595 Download Download
24 fit 1000 1000 2 0.001 0.000 0.030 0.0 1 100 0.001 0.000 0.602 0.603 Download Download
27 fit 1000 1000 2 0.001 0.000 0.031 0.0 -1 100 0.001 0.000 0.584 0.585 Download Download
30 fit 1000 1000 2 0.001 0.000 0.030 0.0 1 5 0.001 0.000 0.583 0.586 Download Download
33 fit 1000 1000 2 0.001 0.000 0.030 0.0 1 1 0.001 0.000 0.606 0.607 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 10 0.469 0.007 0.000 0.000 -1 1 0.132 0.001 3.558 3.558 Download Download
2 predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 1 0.000 0.000 9.006 9.549 Download Download
4 predict 1000000 1000 10 0.881 0.004 0.000 0.001 -1 5 0.227 0.002 3.871 3.871 Download Download
5 predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 5 0.000 0.000 8.736 9.467 Download Download
7 predict 1000000 1000 10 5.254 0.023 0.000 0.005 1 100 0.687 0.013 7.642 7.643 Download Download
8 predict 1000000 1 10 0.003 0.001 0.000 0.003 1 100 0.001 0.000 4.103 4.349 Download Download
10 predict 1000000 1000 10 2.988 0.011 0.000 0.003 -1 100 0.692 0.013 4.318 4.318 Download Download
11 predict 1000000 1 10 0.005 0.001 0.000 0.005 -1 100 0.001 0.000 8.053 8.579 Download Download
13 predict 1000000 1000 10 1.593 0.012 0.000 0.002 1 5 0.227 0.003 7.005 7.006 Download Download
14 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 5 0.000 0.000 3.914 4.154 Download Download
16 predict 1000000 1000 10 0.848 0.005 0.000 0.001 1 1 0.130 0.002 6.518 6.518 Download Download
17 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 1 0.000 0.000 3.982 4.276 Download Download
19 predict 1000 1000 2 0.023 0.000 0.001 0.000 -1 1 0.001 0.000 41.227 41.572 Download Download
20 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 1 0.000 0.000 16.377 17.454 Download Download
22 predict 1000 1000 2 0.024 0.001 0.001 0.000 -1 5 0.001 0.000 34.509 34.696 Download Download
23 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 5 0.000 0.000 16.327 17.423 Download Download
25 predict 1000 1000 2 0.035 0.000 0.000 0.000 1 100 0.005 0.000 7.532 7.533 Download Download
26 predict 1000 1 2 0.001 0.000 0.000 0.001 1 100 0.000 0.000 3.951 4.195 Download Download
28 predict 1000 1000 2 0.036 0.000 0.000 0.000 -1 100 0.005 0.000 7.764 7.764 Download Download
29 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 100 0.000 0.000 13.956 15.719 Download Download
31 predict 1000 1000 2 0.021 0.000 0.001 0.000 1 5 0.001 0.000 30.428 30.548 Download Download
32 predict 1000 1 2 0.001 0.000 0.000 0.001 1 5 0.000 0.000 4.415 4.624 Download Download
34 predict 1000 1000 2 0.020 0.000 0.001 0.000 1 1 0.000 0.000 44.405 44.752 Download Download
35 predict 1000 1 2 0.001 0.000 0.000 0.001 1 1 0.000 0.000 4.166 4.459 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (tall) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=full, n_clusters=3, max_iter=30, n_init=1, tol=1e-16.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 2 0.516 0.006 0.031 0.0 30 random 0.385 0.019 1.342 1.343 Download Download
3 fit 1000000 1000000 2 0.593 0.011 0.027 0.0 30 k-means++ 0.407 0.017 1.458 1.459 Download Download
6 fit 1000000 1000000 100 5.043 0.525 0.159 0.0 30 random 2.873 0.020 1.755 1.755 Download Download
9 fit 1000000 1000000 100 5.113 0.269 0.156 0.0 30 k-means++ 3.114 0.055 1.642 1.642 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 2 0.0 0.0 0.069 0.0 30 random 0.0 0.0 1.150 1.271 Download Download
2 predict 1000000 1 2 0.0 0.0 0.000 0.0 30 random 0.0 0.0 1.248 1.290 Download Download
4 predict 1000000 1000 2 0.0 0.0 0.070 0.0 30 k-means++ 0.0 0.0 1.093 1.204 Download Download
5 predict 1000000 1 2 0.0 0.0 0.000 0.0 30 k-means++ 0.0 0.0 1.317 1.388 Download Download
7 predict 1000000 1000 100 0.0 0.0 1.796 0.0 30 random 0.0 0.0 1.438 1.545 Download Download
8 predict 1000000 1 100 0.0 0.0 0.004 0.0 30 random 0.0 0.0 1.203 1.233 Download Download
10 predict 1000000 1000 100 0.0 0.0 1.901 0.0 30 k-means++ 0.0 0.0 1.369 1.501 Download Download
11 predict 1000000 1 100 0.0 0.0 0.004 0.0 30 k-means++ 0.0 0.0 1.225 1.290 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (short) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=full, n_clusters=300, max_iter=20, n_init=1, tol=1e-16.

Mismatches between validation scores¶

WARNING! Mismatch between validation scores for 2 predictions (25.0%).
The observed differences can be found in the diff_adjusted_rand_scores column.
The chosen difference threshold is 0.01 for adjusted_rand_score.
The biggest difference is 0.033 for adjusted_rand_score.
See details in the dataframe below.
estimator library diff_adjusted_rand_scores function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter algorithm init max_iter n_clusters n_init tol adjusted_rand_score_sklearn mean_duration_sklearnex std_duration_sklearnex adjusted_rand_score_sklearnex speedup std_speedup
7 sklearn_KMeans_short sklearn 0.032069 predict 10000 1000 100 0.001367 0.000150 0.585400 0.000001 20 full random 20 300 1 1.000000e-16 0.293414 0.001206 0.000126 0.325483 1.133293 1.139459
10 sklearn_KMeans_short sklearn 0.032656 predict 10000 1000 100 0.001475 0.000137 0.542234 0.000001 20 full k-means++ 20 300 1 1.000000e-16 0.283247 0.001174 0.000127 0.315903 1.256556 1.263934

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 10000 10000 2 0.083 0.003 0.002 0.0 20 random 0.036 0.001 2.286 2.288 Download Download
3 fit 10000 10000 2 0.203 0.003 0.001 0.0 20 k-means++ 0.090 0.001 2.260 2.260 Download Download
6 fit 10000 10000 100 0.215 0.005 0.037 0.0 20 random 0.141 0.004 1.522 1.523 Download Download
9 fit 10000 10000 100 0.571 0.007 0.014 0.0 20 k-means++ 0.365 0.006 1.564 1.564 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 10000 1000 2 0.001 0.0 0.024 0.0 20 random 0.001 0.0 1.008 1.013 Download Download
2 predict 10000 1 2 0.000 0.0 0.000 0.0 20 random 0.000 0.0 1.276 1.309 Download Download
4 predict 10000 1000 2 0.001 0.0 0.026 0.0 20 k-means++ 0.001 0.0 0.925 0.931 Download Download
5 predict 10000 1 2 0.000 0.0 0.000 0.0 20 k-means++ 0.000 0.0 1.324 1.358 Download Download
7 predict 10000 1000 100 0.001 0.0 0.585 0.0 20 random 0.001 0.0 1.133 1.139 Download Download
8 predict 10000 1 100 0.000 0.0 0.003 0.0 20 random 0.000 0.0 1.220 1.245 Download Download
10 predict 10000 1000 100 0.001 0.0 0.542 0.0 20 k-means++ 0.001 0.0 1.257 1.264 Download Download
11 predict 10000 1 100 0.000 0.0 0.003 0.0 20 k-means++ 0.000 0.0 1.204 1.273 Download Download

Profiling traces can be visualized using Perfetto UI.

Logistic Regression ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: penalty=l2, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1.0, class_weight=nan, random_state=nan, solver=lbfgs, max_iter=100, multi_class=auto, verbose=0, warm_start=False, n_jobs=nan, l1_ratio=nan.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 100 11.343 0.128 0.071 0.000 [20] 2.046 0.026 5.543 5.543 Download Download
3 fit 1000 1000 10000 0.832 0.053 0.096 0.001 [27] 0.975 0.051 0.854 0.855 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 100 0.000 0.0 3.219 0.0 [20] 0.001 0.001 0.381 0.692 Download Download
2 predict 1000000 1 100 0.000 0.0 0.014 0.0 [20] 0.000 0.000 0.286 0.291 Download Download
4 predict 1000 100 10000 0.002 0.0 4.789 0.0 [27] 0.003 0.000 0.535 0.536 Download Download
5 predict 1000 1 10000 0.000 0.0 0.983 0.0 [27] 0.001 0.000 0.130 0.131 Download Download

Profiling traces can be visualized using Perfetto UI.

LinearRegression ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters:

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 1.355 0.015 0.059 0.001 True True deprecated False 1.580 0.025 0.857 0.857 Download Download
3 fit 1000000 1000000 100 9.422 0.643 0.085 0.000 True True deprecated False 0.198 0.005 47.579 47.595 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.012 0.0 6.659 0.0 True True deprecated False 0.019 0.0 0.633 0.633 Download Download
2 predict 1000 10 10000 0.000 0.0 6.334 0.0 True True deprecated False 0.000 0.0 0.430 0.446 Download Download
4 predict 1000000 1000 100 0.000 0.0 5.866 0.0 True True deprecated False 0.000 0.0 0.290 0.329 Download Download
5 predict 1000000 10 100 0.000 0.0 0.146 0.0 True True deprecated False 0.000 0.0 0.415 0.429 Download Download

Profiling traces can be visualized using Perfetto UI.

Ridge ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: alpha=1e-06.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 0.176 0.004 0.455 0.0 0.183 0.002 0.958 0.958 Download Download
3 fit 1000000 1000000 100 1.101 0.014 0.727 0.0 0.230 0.003 4.786 4.787 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.012 0.0 6.699 0.0 0.019 0.0 0.630 0.630 Download Download
2 predict 1000 10 10000 0.000 0.0 6.432 0.0 0.000 0.0 0.355 0.434 Download Download
4 predict 1000000 1000 100 0.000 0.0 5.907 0.0 0.000 0.0 0.464 0.494 Download Download
5 predict 1000000 10 100 0.000 0.0 0.159 0.0 0.000 0.0 0.349 0.359 Download Download

Profiling traces can be visualized using Perfetto UI.

TSNE ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters:

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter angle early_exaggeration init learning_rate method metric min_grad_norm n_components n_iter_without_progress perplexity square_distances verbose mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 3 3.422 0.17 0.0 0.003 1000 0.5 12.0 warn warn barnes_hut euclidean 0.0 2 300 30.0 legacy 0 3.492 0.306 0.98 0.984 Download Download

Profiling traces can be visualized using Perfetto UI.

PCA ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: n_components=10.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 0.505 0.013 0.159 0.0 0.028 0.005 17.764 18.092 Download Download
1 fit 10000 10000 1000 0.448 0.004 0.179 0.0 0.195 0.004 2.294 2.294 Download Download

Profiling traces can be visualized using Perfetto UI.

Benchmark environment information¶

System¶

python 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0]
executable /usr/share/miniconda/envs/sklbench/bin/python
machine Linux-5.11.0-1028-azure-x86_64-with-glibc2.10

Dependencies¶

version
pip 22.0.4
setuptools 60.9.3
sklearn 1.0.2
numpy 1.22.3
scipy 1.8.0
Cython None
pandas 1.4.1
matplotlib 3.5.1
joblib 1.1.0
threadpoolctl 3.1.0

Threadpool¶

user_api internal_api prefix filepath version threading_layer architecture num_threads
0 blas openblas libopenblas /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so 0.3.18 pthreads SkylakeX 2
1 openmp openmp libgomp /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 None NaN NaN 2

CPU count¶

cpu_count 2
physical_cpu_count 2