In [1]:
from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_results_directory
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

scikit-learn-intelex (Intel® oneAPI) vs. scikit-learn¶

In [2]:
results_dir = default_results_directory()
In [3]:
# Parameters
results_dir = "./results/local/20220316T120802/"
In [4]:
results_dir = Path(results_dir)
In [5]:
reporting = HpMatchReporting(other_library="sklearnex", config="config.yml", log_scale=True, results_dir=results_dir)
reporting.make_report()

We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up time scikit-learn / time sklearnex. For instance, a speed-up of 2 means that sklearnex is twice as fast as scikit-learn for a given set of parameters and a given dataset.

KNeighborsClassifier (brute force) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=brute.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 1.187 0.017 0.067 0.0 -1 1 0.049 0.005 24.448 24.571 Download Download
3 fit 100000 100000 100 1.152 0.025 0.069 0.0 -1 5 0.047 0.000 24.474 24.474 Download Download
6 fit 100000 100000 100 1.160 0.019 0.069 0.0 1 100 0.047 0.000 24.840 24.840 Download Download
9 fit 100000 100000 100 1.185 0.056 0.068 0.0 -1 100 0.047 0.000 25.152 25.152 Download Download
12 fit 100000 100000 100 1.161 0.014 0.069 0.0 1 5 0.047 0.000 24.720 24.720 Download Download
15 fit 100000 100000 100 1.133 0.015 0.071 0.0 1 1 0.047 0.000 24.211 24.211 Download Download
18 fit 100000 100000 2 0.047 0.001 0.034 0.0 -1 1 0.009 0.000 5.044 5.044 Download Download
21 fit 100000 100000 2 0.046 0.000 0.035 0.0 -1 5 0.009 0.000 5.044 5.045 Download Download
24 fit 100000 100000 2 0.046 0.000 0.035 0.0 1 100 0.009 0.000 4.927 4.927 Download Download
27 fit 100000 100000 2 0.046 0.000 0.035 0.0 -1 100 0.009 0.000 5.011 5.011 Download Download
30 fit 100000 100000 2 0.051 0.000 0.031 0.0 1 5 0.009 0.000 5.550 5.550 Download Download
33 fit 100000 100000 2 0.052 0.000 0.031 0.0 1 1 0.009 0.000 5.593 5.593 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 100000 1000 100 2.773 0.379 0.000 0.003 -1 1 0.189 0.008 14.656 14.669 Download Download
2 predict 100000 1 100 0.022 0.002 0.000 0.022 -1 1 0.009 0.000 2.436 2.437 Download Download
4 predict 100000 1000 100 3.143 0.073 0.000 0.003 -1 5 0.186 0.003 16.892 16.894 Download Download
5 predict 100000 1 100 0.024 0.002 0.000 0.024 -1 5 0.009 0.000 2.654 2.655 Download Download
7 predict 100000 1000 100 1.792 0.002 0.000 0.002 1 100 0.231 0.005 7.772 7.774 Download Download
8 predict 100000 1 100 0.020 0.000 0.000 0.020 1 100 0.009 0.000 2.239 2.240 Download Download
10 predict 100000 1000 100 2.868 0.060 0.000 0.003 -1 100 0.241 0.012 11.919 11.935 Download Download
11 predict 100000 1 100 0.022 0.003 0.000 0.022 -1 100 0.009 0.000 2.463 2.464 Download Download
13 predict 100000 1000 100 1.779 0.005 0.000 0.002 1 5 0.189 0.004 9.434 9.436 Download Download
14 predict 100000 1 100 0.020 0.000 0.000 0.020 1 5 0.009 0.000 2.263 2.263 Download Download
16 predict 100000 1000 100 1.159 0.007 0.001 0.001 1 1 0.191 0.005 6.064 6.067 Download Download
17 predict 100000 1 100 0.020 0.001 0.000 0.020 1 1 0.009 0.000 2.219 2.220 Download Download
19 predict 100000 1000 2 1.880 0.049 0.000 0.002 -1 1 0.032 0.001 59.549 59.557 Download Download
20 predict 100000 1 2 0.004 0.000 0.000 0.004 -1 1 0.001 0.000 4.650 4.684 Download Download
22 predict 100000 1000 2 2.701 0.050 0.000 0.003 -1 5 0.032 0.001 84.799 84.837 Download Download
23 predict 100000 1 2 0.005 0.000 0.000 0.005 -1 5 0.001 0.000 6.353 6.389 Download Download
25 predict 100000 1000 2 1.732 0.007 0.000 0.002 1 100 0.072 0.001 24.029 24.032 Download Download
26 predict 100000 1 2 0.003 0.000 0.000 0.003 1 100 0.001 0.000 2.924 2.961 Download Download
28 predict 100000 1000 2 2.726 0.094 0.000 0.003 -1 100 0.071 0.002 38.169 38.183 Download Download
29 predict 100000 1 2 0.008 0.006 0.000 0.008 -1 100 0.001 0.000 9.574 9.674 Download Download
31 predict 100000 1000 2 1.842 0.004 0.000 0.002 1 5 0.031 0.001 59.026 59.091 Download Download
32 predict 100000 1 2 0.003 0.000 0.000 0.003 1 5 0.001 0.000 3.366 3.394 Download Download
34 predict 100000 1000 2 1.081 0.002 0.000 0.001 1 1 0.031 0.001 35.273 35.301 Download Download
35 predict 100000 1 2 0.002 0.000 0.000 0.002 1 1 0.001 0.000 2.124 2.134 Download Download

Profiling traces can be visualized using Perfetto UI.

KNeighborsClassifier (KD tree) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=kd_tree.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 10 3.387 0.021 0.024 0.0 -1 1 0.767 0.008 4.415 4.415 Download Download
3 fit 1000000 1000000 10 3.359 0.040 0.024 0.0 -1 5 0.785 0.019 4.282 4.283 Download Download
6 fit 1000000 1000000 10 3.348 0.018 0.024 0.0 1 100 0.797 0.019 4.203 4.204 Download Download
9 fit 1000000 1000000 10 3.325 0.031 0.024 0.0 -1 100 0.781 0.008 4.258 4.258 Download Download
12 fit 1000000 1000000 10 3.300 0.011 0.024 0.0 1 5 0.770 0.023 4.287 4.289 Download Download
15 fit 1000000 1000000 10 3.525 0.038 0.023 0.0 1 1 0.753 0.004 4.682 4.682 Download Download
18 fit 1000 1000 2 0.001 0.000 0.031 0.0 -1 1 0.001 0.000 0.564 0.565 Download Download
21 fit 1000 1000 2 0.000 0.000 0.032 0.0 -1 5 0.001 0.000 0.566 0.567 Download Download
24 fit 1000 1000 2 0.001 0.000 0.032 0.0 1 100 0.001 0.000 0.542 0.542 Download Download
27 fit 1000 1000 2 0.001 0.000 0.032 0.0 -1 100 0.001 0.000 0.512 0.513 Download Download
30 fit 1000 1000 2 0.001 0.000 0.031 0.0 1 5 0.001 0.000 0.506 0.507 Download Download
33 fit 1000 1000 2 0.000 0.000 0.033 0.0 1 1 0.001 0.000 0.513 0.519 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 10 0.443 0.005 0.000 0.000 -1 1 0.116 0.001 3.832 3.832 Download Download
2 predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 1 0.000 0.000 9.813 10.325 Download Download
4 predict 1000000 1000 10 0.822 0.004 0.000 0.001 -1 5 0.208 0.002 3.954 3.954 Download Download
5 predict 1000000 1 10 0.004 0.001 0.000 0.004 -1 5 0.000 0.000 11.415 12.103 Download Download
7 predict 1000000 1000 10 4.683 0.013 0.000 0.005 1 100 0.626 0.007 7.482 7.483 Download Download
8 predict 1000000 1 10 0.003 0.000 0.000 0.003 1 100 0.001 0.000 4.649 4.814 Download Download
10 predict 1000000 1000 10 2.676 0.017 0.000 0.003 -1 100 0.622 0.008 4.301 4.301 Download Download
11 predict 1000000 1 10 0.006 0.001 0.000 0.006 -1 100 0.001 0.000 8.950 9.283 Download Download
13 predict 1000000 1000 10 1.433 0.018 0.000 0.001 1 5 0.205 0.001 7.007 7.007 Download Download
14 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 5 0.000 0.000 4.005 4.232 Download Download
16 predict 1000000 1000 10 0.754 0.002 0.000 0.001 1 1 0.116 0.002 6.481 6.481 Download Download
17 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 1 0.000 0.000 3.644 3.884 Download Download
19 predict 1000 1000 2 0.021 0.001 0.001 0.000 -1 1 0.001 0.001 21.381 34.023 Download Download
20 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 1 0.000 0.000 20.055 21.333 Download Download
22 predict 1000 1000 2 0.021 0.000 0.001 0.000 -1 5 0.001 0.000 27.835 27.916 Download Download
23 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 5 0.000 0.000 17.885 19.098 Download Download
25 predict 1000 1000 2 0.030 0.000 0.001 0.000 1 100 0.004 0.000 6.861 6.868 Download Download
26 predict 1000 1 2 0.001 0.000 0.000 0.001 1 100 0.000 0.000 4.374 4.772 Download Download
28 predict 1000 1000 2 0.035 0.001 0.000 0.000 -1 100 0.004 0.000 7.830 7.837 Download Download
29 predict 1000 1 2 0.002 0.001 0.000 0.002 -1 100 0.000 0.000 16.760 18.719 Download Download
31 predict 1000 1000 2 0.019 0.000 0.001 0.000 1 5 0.001 0.000 27.899 28.001 Download Download
32 predict 1000 1 2 0.001 0.000 0.000 0.001 1 5 0.000 0.000 4.745 5.079 Download Download
34 predict 1000 1000 2 0.017 0.000 0.001 0.000 1 1 0.000 0.000 41.923 42.282 Download Download
35 predict 1000 1 2 0.001 0.000 0.000 0.001 1 1 0.000 0.000 4.638 4.968 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (tall) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=full, n_clusters=3, max_iter=30, n_init=1, tol=1e-16.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 2 0.482 0.006 0.033 0.0 30 random 0.418 0.022 1.151 1.153 Download Download
3 fit 1000000 1000000 2 0.559 0.010 0.029 0.0 30 k-means++ 0.449 0.025 1.246 1.248 Download Download
6 fit 1000000 1000000 100 5.181 0.415 0.154 0.0 30 random 2.858 0.027 1.813 1.813 Download Download
9 fit 1000000 1000000 100 5.106 0.024 0.157 0.0 30 k-means++ 3.045 0.039 1.677 1.677 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 2 0.0 0.000 0.074 0.0 30 random 0.0 0.0 1.103 1.192 Download Download
2 predict 1000000 1 2 0.0 0.000 0.000 0.0 30 random 0.0 0.0 1.391 1.466 Download Download
4 predict 1000000 1000 2 0.0 0.000 0.070 0.0 30 k-means++ 0.0 0.0 1.037 1.151 Download Download
5 predict 1000000 1 2 0.0 0.001 0.000 0.0 30 k-means++ 0.0 0.0 3.176 3.457 Download Download
7 predict 1000000 1000 100 0.0 0.000 1.698 0.0 30 random 0.0 0.0 1.312 1.382 Download Download
8 predict 1000000 1 100 0.0 0.000 0.005 0.0 30 random 0.0 0.0 1.099 1.149 Download Download
10 predict 1000000 1000 100 0.0 0.000 1.685 0.0 30 k-means++ 0.0 0.0 1.434 1.528 Download Download
11 predict 1000000 1 100 0.0 0.000 0.004 0.0 30 k-means++ 0.0 0.0 1.153 1.199 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (short) ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: algorithm=full, n_clusters=300, max_iter=20, n_init=1, tol=1e-16.

Mismatches between validation scores¶

WARNING! Mismatch between validation scores for 2 predictions (25.0%).
The observed differences can be found in the diff_adjusted_rand_scores column.
The chosen difference threshold is 0.01 for adjusted_rand_score.
The biggest difference is 0.033 for adjusted_rand_score.
See details in the dataframe below.
estimator library diff_adjusted_rand_scores function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter algorithm init max_iter n_clusters n_init tol adjusted_rand_score_sklearn mean_duration_sklearnex std_duration_sklearnex adjusted_rand_score_sklearnex speedup std_speedup
7 sklearn_KMeans_short sklearn 0.032069 predict 10000 1000 100 0.001505 0.000121 0.531682 0.000002 20 full random 20 300 1 1.000000e-16 0.293414 0.001367 0.000108 0.325483 1.100712 1.104112
10 sklearn_KMeans_short sklearn 0.032656 predict 10000 1000 100 0.002034 0.001902 0.393260 0.000002 20 full k-means++ 20 300 1 1.000000e-16 0.283247 0.001393 0.000126 0.315903 1.460296 1.466269

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 10000 10000 2 0.094 0.012 0.002 0.0 20 random 0.038 0.002 2.498 2.502 Download Download
3 fit 10000 10000 2 0.224 0.002 0.001 0.0 20 k-means++ 0.091 0.002 2.460 2.461 Download Download
6 fit 10000 10000 100 0.233 0.003 0.034 0.0 20 random 0.157 0.002 1.477 1.477 Download Download
9 fit 10000 10000 100 0.647 0.017 0.012 0.0 20 k-means++ 0.377 0.003 1.717 1.717 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 10000 1000 2 0.001 0.000 0.024 0.0 20 random 0.001 0.0 0.931 0.934 Download Download
2 predict 10000 1 2 0.000 0.000 0.000 0.0 20 random 0.000 0.0 1.379 1.430 Download Download
4 predict 10000 1000 2 0.001 0.000 0.023 0.0 20 k-means++ 0.001 0.0 0.956 0.963 Download Download
5 predict 10000 1 2 0.000 0.000 0.000 0.0 20 k-means++ 0.000 0.0 1.404 1.504 Download Download
7 predict 10000 1000 100 0.002 0.000 0.532 0.0 20 random 0.001 0.0 1.101 1.104 Download Download
8 predict 10000 1 100 0.000 0.000 0.003 0.0 20 random 0.000 0.0 1.219 1.292 Download Download
10 predict 10000 1000 100 0.002 0.002 0.393 0.0 20 k-means++ 0.001 0.0 1.460 1.466 Download Download
11 predict 10000 1 100 0.000 0.000 0.002 0.0 20 k-means++ 0.000 0.0 1.419 1.509 Download Download

Profiling traces can be visualized using Perfetto UI.

Logistic Regression ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: penalty=l2, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1.0, class_weight=nan, random_state=nan, solver=lbfgs, max_iter=100, multi_class=auto, verbose=0, warm_start=False, n_jobs=nan, l1_ratio=nan.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 100 11.149 0.054 0.072 0.000 [20] 1.995 0.018 5.587 5.587 Download Download
3 fit 1000 1000 10000 0.794 0.049 0.101 0.001 [27] 0.769 0.044 1.032 1.034 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 100 0.000 0.0 2.651 0.0 [20] 0.001 0.002 0.299 0.615 Download Download
2 predict 1000000 1 100 0.000 0.0 0.012 0.0 [20] 0.000 0.000 0.312 0.330 Download Download
4 predict 1000 100 10000 0.002 0.0 4.382 0.0 [27] 0.004 0.000 0.497 0.497 Download Download
5 predict 1000 1 10000 0.000 0.0 0.981 0.0 [27] 0.001 0.000 0.113 0.115 Download Download

Profiling traces can be visualized using Perfetto UI.

LinearRegression ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters:

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 1.430 0.021 0.056 0.001 True True deprecated False 1.668 0.023 0.857 0.857 Download Download
3 fit 1000000 1000000 100 8.322 0.552 0.096 0.000 True True deprecated False 0.210 0.003 39.654 39.657 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.011 0.0 7.317 0.0 True True deprecated False 0.018 0.0 0.601 0.601 Download Download
2 predict 1000 10 10000 0.000 0.0 5.230 0.0 True True deprecated False 0.000 0.0 0.480 0.500 Download Download
4 predict 1000000 1000 100 0.000 0.0 5.587 0.0 True True deprecated False 0.000 0.0 0.287 0.319 Download Download
5 predict 1000000 10 100 0.000 0.0 0.115 0.0 True True deprecated False 0.000 0.0 0.429 0.448 Download Download

Profiling traces can be visualized using Perfetto UI.

Ridge ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: alpha=1e-06.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 0.184 0.005 0.434 0.0 0.190 0.003 0.973 0.973 Download Download
3 fit 1000000 1000000 100 1.092 0.014 0.732 0.0 0.241 0.003 4.524 4.525 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.011 0.0 7.334 0.0 0.018 0.0 0.612 0.612 Download Download
2 predict 1000 10 10000 0.000 0.0 5.347 0.0 0.000 0.0 0.417 0.467 Download Download
4 predict 1000000 1000 100 0.000 0.0 5.455 0.0 0.000 0.0 0.481 0.506 Download Download
5 predict 1000000 10 100 0.000 0.0 0.125 0.0 0.000 0.0 0.398 0.413 Download Download

Profiling traces can be visualized using Perfetto UI.

TSNE ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters:

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter angle early_exaggeration init learning_rate method metric min_grad_norm n_components n_iter_without_progress perplexity square_distances verbose mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 3 3.338 0.227 0.0 0.003 1000 0.5 12.0 warn warn barnes_hut euclidean 0.0 2 300 30.0 legacy 0 3.588 0.384 0.93 0.936 Download Download

Profiling traces can be visualized using Perfetto UI.

PCA ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: n_components=10.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 0.481 0.007 0.166 0.0 0.031 0.006 15.261 15.519 Download Download
1 fit 10000 10000 1000 0.415 0.003 0.193 0.0 0.214 0.004 1.942 1.943 Download Download

Profiling traces can be visualized using Perfetto UI.

SVC ¶

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots ¶

All estimators share the following parameters: C=0.05, kernel=rbf, gamma=scale, tol=1e-16, probability=True.

Raw results ¶

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 5000 5000 100 11.229 0.064 0.0 0.002 4.88 1.031 2.301 2.352 Download Download

Profiling traces can be visualized using Perfetto UI.

Benchmark environment information¶

System¶

python 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0]
executable /usr/share/miniconda/envs/sklbench/bin/python
machine Linux-5.11.0-1028-azure-x86_64-with-glibc2.10

Dependencies¶

version
pip 22.0.4
setuptools 60.9.3
sklearn 1.0.2
numpy 1.22.3
scipy 1.8.0
Cython None
pandas 1.4.1
matplotlib 3.5.1
joblib 1.1.0
threadpoolctl 3.1.0

Threadpool¶

user_api internal_api prefix filepath version threading_layer architecture num_threads
0 blas openblas libopenblas /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so 0.3.18 pthreads SkylakeX 2
1 openmp openmp libgomp /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 None NaN NaN 2

CPU count¶

cpu_count 2
physical_cpu_count 2