In [1]:
from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_run_dir, default_report_config
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

scikit-learn-intelex (Intel® oneAPI) vs. scikit-learn

In [2]:
run_dir = default_run_dir()
report_config = default_report_config("scikit_learn_intelex_vs_scikit_learn")
In [3]:
# Parameters
report_config = {
    "benchmarking_estimator_parameters": {
        "sklearn_KNeighborsClassifier_brute_force": [
            "n_neighbors",
            "algorithm",
            "n_jobs",
        ],
        "sklearnex_KNeighborsClassifier_brute_force": [],
        "sklearn_KNeighborsClassifier_kd_tree": ["n_neighbors", "algorithm", "n_jobs"],
        "sklearnex_KNeighborsClassifier_kd_tree": [],
        "sklearn_KMeans_tall": [
            "init",
            "algorithm",
            "n_clusters",
            "max_iter",
            "n_init",
            "tol",
        ],
        "sklearnex_KMeans_tall": [],
        "sklearn_KMeans_short": [
            "init",
            "algorithm",
            "n_clusters",
            "max_iter",
            "n_init",
            "tol",
        ],
        "sklearnex_KMeans_short": [],
        "sklearn_LogisticRegression": [
            "penalty",
            "dual",
            "tol",
            "C",
            "fit_intercept",
            "intercept_scaling",
            "class_weight",
            "random_state",
            "solver",
            "max_iter",
            "multi_class",
            "verbose",
            "warm_start",
            "n_jobs",
            "l1_ratio",
        ],
        "sklearnex_LogisticRegression": [],
        "sklearn_LinearRegression": [],
        "sklearnex_LinearRegression": [],
        "sklearn_Ridge": ["alpha"],
        "sklearnex_Ridge": [],
        "sklearn_TSNE": [],
        "sklearnex_TSNE": [],
        "sklearn_PCA": ["n_components"],
        "sklearnex_PCA": [],
        "sklearn_HistGradientBoostingClassifier_best": [
            "learning_rate",
            "n_iter_no_change",
            "max_leaf_nodes",
            "max_bins",
            "min_samples_leaf",
            "max_iter",
        ],
        "sklearn_HistGradientBoostingClassifier": [
            "learning_rate",
            "n_iter_no_change",
            "max_leaf_nodes",
            "max_bins",
            "min_samples_leaf",
            "max_iter",
            "early_stopping",
        ],
        "lightgbm": [
            "learning_rate",
            "num_leaves",
            "max_bin",
            "min_data_in_leaf",
            "bagging_fraction",
            "feature_fraction_bynode",
            "n_estimators",
        ],
        "xgboost": [
            "validate_parameters",
            "tree_method",
            "use_label_encoder",
            "learning_rate",
            "max_leaves",
            "max_bin",
            "min_child_weight",
            "subsample",
            "colsample_bynode",
            "n_estimators",
        ],
        "catboost_lossguide": [
            "allow_writing_files",
            "grow_policy",
            "bootstrap_type",
            "learning_rate",
            "max_leaves",
            "border_count",
            "min_data_in_leaf",
            "subsample",
            "rsm",
            "max_depth",
            "iterations",
        ],
        "catboost_symmetric": [
            "allow_writing_files",
            "grow_policy",
            "bootstrap_type",
            "learning_rate",
            "border_count",
            "min_data_in_leaf",
            "subsample",
            "rsm",
            "max_depth",
            "iterations",
        ],
    },
    "parameters": {"n_cols": 2},
    "log_scale": True,
    "other_library": "sklearnex",
    "estimators": [
        {
            "title": "KNeighborsClassifier (brute force)",
            "name": "KNeighborsClassifier_brute_force",
            "split_bars_by_parameters": ["n_jobs"],
        },
        {
            "title": "KNeighborsClassifier (KD tree)",
            "name": "KNeighborsClassifier_kd_tree",
            "split_bars_by_parameters": ["n_jobs"],
        },
        {"title": "KMeans (tall)", "name": "KMeans_tall"},
        {"title": "KMeans (short)", "name": "KMeans_short"},
        {"title": "Logistic Regression", "name": "LogisticRegression"},
        {"title": "LinearRegression", "name": "LinearRegression"},
        {"title": "Ridge", "name": "Ridge"},
        {"title": "TSNE", "name": "TSNE"},
        {"title": "PCA", "name": "PCA"},
    ],
}
run_dir = "./results/local/20220316T125341/"
In [4]:
run_dir = Path(run_dir)
In [5]:
reporting = HpMatchReporting(**report_config, run_dir=run_dir)
reporting.make_report()

We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up time scikit-learn / time sklearnex. For instance, a speed-up of 2 means that sklearnex is twice as fast as scikit-learn for a given set of parameters and a given dataset.

KNeighborsClassifier (brute force)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=brute.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 1.161 0.030 0.069 0.0 -1 1 0.049 0.001 23.633 23.635 Download Download
3 fit 100000 100000 100 1.165 0.047 0.069 0.0 -1 5 0.044 0.001 26.588 26.590 Download Download
6 fit 100000 100000 100 1.164 0.023 0.069 0.0 1 100 0.044 0.001 26.396 26.398 Download Download
9 fit 100000 100000 100 1.120 0.037 0.071 0.0 -1 100 0.049 0.000 23.011 23.011 Download Download
12 fit 100000 100000 100 1.170 0.025 0.068 0.0 1 5 0.044 0.001 26.814 26.817 Download Download
15 fit 100000 100000 100 1.182 0.024 0.068 0.0 1 1 0.049 0.000 24.135 24.135 Download Download
18 fit 100000 100000 2 0.045 0.001 0.036 0.0 -1 1 0.008 0.000 5.346 5.348 Download Download
21 fit 100000 100000 2 0.045 0.002 0.035 0.0 -1 5 0.008 0.000 5.353 5.355 Download Download
24 fit 100000 100000 2 0.045 0.001 0.035 0.0 1 100 0.008 0.000 5.437 5.440 Download Download
27 fit 100000 100000 2 0.045 0.002 0.036 0.0 -1 100 0.008 0.000 5.402 5.402 Download Download
30 fit 100000 100000 2 0.045 0.002 0.035 0.0 1 5 0.008 0.000 5.383 5.385 Download Download
33 fit 100000 100000 2 0.044 0.002 0.036 0.0 1 1 0.008 0.000 5.292 5.293 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 100000 1000 100 2.259 0.121 0.000 0.002 -1 1 0.169 0.003 13.355 13.358 Download Download
2 predict 100000 1 100 0.020 0.002 0.000 0.020 -1 1 0.008 0.000 2.556 2.558 Download Download
4 predict 100000 1000 100 2.814 0.066 0.000 0.003 -1 5 0.170 0.002 16.580 16.580 Download Download
5 predict 100000 1 100 0.022 0.002 0.000 0.022 -1 5 0.008 0.000 2.827 2.828 Download Download
7 predict 100000 1000 100 1.846 0.003 0.000 0.002 1 100 0.205 0.001 9.020 9.020 Download Download
8 predict 100000 1 100 0.018 0.000 0.000 0.018 1 100 0.008 0.000 2.360 2.361 Download Download
10 predict 100000 1000 100 2.606 0.048 0.000 0.003 -1 100 0.205 0.002 12.720 12.721 Download Download
11 predict 100000 1 100 0.021 0.002 0.000 0.021 -1 100 0.008 0.000 2.694 2.696 Download Download
13 predict 100000 1000 100 1.849 0.016 0.000 0.002 1 5 0.168 0.001 11.024 11.024 Download Download
14 predict 100000 1 100 0.019 0.000 0.000 0.019 1 5 0.008 0.000 2.406 2.406 Download Download
16 predict 100000 1000 100 1.170 0.017 0.001 0.001 1 1 0.166 0.001 7.049 7.049 Download Download
17 predict 100000 1 100 0.017 0.000 0.000 0.017 1 1 0.008 0.000 2.212 2.213 Download Download
19 predict 100000 1000 2 1.683 0.024 0.000 0.002 -1 1 0.026 0.000 65.311 65.315 Download Download
20 predict 100000 1 2 0.005 0.002 0.000 0.005 -1 1 0.001 0.000 5.789 5.818 Download Download
22 predict 100000 1000 2 2.423 0.022 0.000 0.002 -1 5 0.027 0.000 89.728 89.730 Download Download
23 predict 100000 1 2 0.006 0.002 0.000 0.006 -1 5 0.001 0.000 7.983 8.105 Download Download
25 predict 100000 1000 2 1.809 0.008 0.000 0.002 1 100 0.060 0.000 30.080 30.080 Download Download
26 predict 100000 1 2 0.003 0.000 0.000 0.003 1 100 0.001 0.000 3.047 3.054 Download Download
28 predict 100000 1000 2 2.460 0.021 0.000 0.002 -1 100 0.060 0.000 40.773 40.774 Download Download
29 predict 100000 1 2 0.007 0.002 0.000 0.007 -1 100 0.001 0.000 8.006 8.149 Download Download
31 predict 100000 1000 2 1.790 0.005 0.000 0.002 1 5 0.027 0.000 66.836 66.837 Download Download
32 predict 100000 1 2 0.003 0.000 0.000 0.003 1 5 0.001 0.000 3.416 3.423 Download Download
34 predict 100000 1000 2 1.034 0.005 0.000 0.001 1 1 0.026 0.000 39.874 39.876 Download Download
35 predict 100000 1 2 0.002 0.000 0.000 0.002 1 1 0.001 0.000 2.201 2.224 Download Download

Profiling traces can be visualized using Perfetto UI.

KNeighborsClassifier (KD tree)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=kd_tree.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 10 2.729 0.074 0.029 0.0 -1 1 0.692 0.013 3.942 3.943 Download Download
3 fit 1000000 1000000 10 2.766 0.047 0.029 0.0 -1 5 0.687 0.014 4.027 4.028 Download Download
6 fit 1000000 1000000 10 2.627 0.050 0.030 0.0 1 100 0.686 0.013 3.826 3.827 Download Download
9 fit 1000000 1000000 10 2.691 0.062 0.030 0.0 -1 100 0.698 0.021 3.858 3.860 Download Download
12 fit 1000000 1000000 10 2.656 0.051 0.030 0.0 1 5 0.679 0.005 3.909 3.910 Download Download
15 fit 1000000 1000000 10 2.751 0.084 0.029 0.0 1 1 0.657 0.008 4.185 4.185 Download Download
18 fit 1000 1000 2 0.001 0.000 0.029 0.0 -1 1 0.001 0.000 0.562 0.567 Download Download
21 fit 1000 1000 2 0.001 0.000 0.029 0.0 -1 5 0.001 0.000 0.592 0.599 Download Download
24 fit 1000 1000 2 0.001 0.000 0.030 0.0 1 100 0.001 0.000 0.572 0.578 Download Download
27 fit 1000 1000 2 0.001 0.000 0.030 0.0 -1 100 0.001 0.000 0.576 0.584 Download Download
30 fit 1000 1000 2 0.001 0.000 0.030 0.0 1 5 0.001 0.000 0.577 0.583 Download Download
33 fit 1000 1000 2 0.001 0.000 0.029 0.0 1 1 0.001 0.000 0.574 0.580 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 10 0.398 0.005 0.000 0.000 -1 1 0.097 0.003 4.120 4.121 Download Download
2 predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 1 0.000 0.000 9.516 10.218 Download Download
4 predict 1000000 1000 10 0.751 0.014 0.000 0.001 -1 5 0.177 0.013 4.238 4.249 Download Download
5 predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 5 0.000 0.000 9.497 10.176 Download Download
7 predict 1000000 1000 10 4.195 0.042 0.000 0.004 1 100 0.524 0.016 8.009 8.013 Download Download
8 predict 1000000 1 10 0.002 0.001 0.000 0.002 1 100 0.001 0.000 4.334 4.577 Download Download
10 predict 1000000 1000 10 2.450 0.043 0.000 0.002 -1 100 0.521 0.009 4.707 4.708 Download Download
11 predict 1000000 1 10 0.004 0.001 0.000 0.004 -1 100 0.001 0.000 7.122 7.473 Download Download
13 predict 1000000 1000 10 1.235 0.018 0.000 0.001 1 5 0.167 0.002 7.400 7.400 Download Download
14 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 5 0.000 0.000 3.787 4.076 Download Download
16 predict 1000000 1000 10 0.678 0.009 0.000 0.001 1 1 0.096 0.002 7.055 7.056 Download Download
17 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 1 0.000 0.000 3.485 3.732 Download Download
19 predict 1000 1000 2 0.023 0.000 0.001 0.000 -1 1 0.001 0.000 43.785 44.988 Download Download
20 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 1 0.000 0.000 14.839 17.360 Download Download
22 predict 1000 1000 2 0.025 0.000 0.001 0.000 -1 5 0.001 0.000 29.977 30.407 Download Download
23 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 5 0.000 0.000 15.124 17.251 Download Download
25 predict 1000 1000 2 0.035 0.000 0.000 0.000 1 100 0.005 0.000 7.527 7.541 Download Download
26 predict 1000 1 2 0.001 0.000 0.000 0.001 1 100 0.000 0.000 3.564 4.096 Download Download
28 predict 1000 1000 2 0.036 0.000 0.000 0.000 -1 100 0.005 0.000 7.741 7.749 Download Download
29 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 100 0.000 0.000 13.482 15.441 Download Download
31 predict 1000 1000 2 0.022 0.000 0.001 0.000 1 5 0.001 0.000 26.606 26.935 Download Download
32 predict 1000 1 2 0.001 0.000 0.000 0.001 1 5 0.000 0.000 3.641 4.303 Download Download
34 predict 1000 1000 2 0.020 0.000 0.001 0.000 1 1 0.001 0.000 37.709 39.074 Download Download
35 predict 1000 1 2 0.001 0.000 0.000 0.001 1 1 0.000 0.000 3.663 4.322 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (tall)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=full, n_clusters=3, max_iter=30, n_init=1, tol=1e-16.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 2 0.481 0.003 0.033 0.0 30 random 0.367 0.028 1.310 1.314 Download Download
3 fit 1000000 1000000 2 0.558 0.005 0.029 0.0 30 k-means++ 0.428 0.030 1.305 1.308 Download Download
6 fit 1000000 1000000 100 4.647 0.178 0.172 0.0 30 random 2.635 0.053 1.764 1.764 Download Download
9 fit 1000000 1000000 100 4.774 0.075 0.168 0.0 30 k-means++ 2.751 0.056 1.735 1.735 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 2 0.0 0.0 0.066 0.0 30 random 0.000 0.0 1.180 1.322 Download Download
2 predict 1000000 1 2 0.0 0.0 0.000 0.0 30 random 0.000 0.0 1.294 1.490 Download Download
4 predict 1000000 1000 2 0.0 0.0 0.064 0.0 30 k-means++ 0.000 0.0 1.112 1.220 Download Download
5 predict 1000000 1 2 0.0 0.0 0.000 0.0 30 k-means++ 0.000 0.0 1.334 1.575 Download Download
7 predict 1000000 1000 100 0.0 0.0 1.902 0.0 30 random 0.001 0.0 0.776 0.989 Download Download
8 predict 1000000 1 100 0.0 0.0 0.004 0.0 30 random 0.000 0.0 1.002 1.155 Download Download
10 predict 1000000 1000 100 0.0 0.0 1.871 0.0 30 k-means++ 0.000 0.0 1.352 1.466 Download Download
11 predict 1000000 1 100 0.0 0.0 0.004 0.0 30 k-means++ 0.000 0.0 1.250 1.448 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (short)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=full, n_clusters=300, max_iter=20, n_init=1, tol=1e-16.

Mismatches between validation scores

WARNING! Mismatch between validation scores for 2 predictions (25.0%).
The observed differences can be found in the diff_adjusted_rand_scores column.
The chosen difference threshold is 0.01 for adjusted_rand_score.
The biggest difference is 0.077 for adjusted_rand_score.
See details in the dataframe below.
estimator library diff_adjusted_rand_scores function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter algorithm init max_iter n_clusters n_init tol adjusted_rand_score_sklearn mean_duration_sklearnex std_duration_sklearnex adjusted_rand_score_sklearnex speedup std_speedup
7 sklearn_KMeans_short sklearn 0.074768 predict 10000 1000 100 0.001333 0.000239 0.599971 0.000001 20 full random 20 300 1 1.000000e-16 0.222701 0.001153 0.000145 0.297469 1.156055 1.165137
10 sklearn_KMeans_short sklearn 0.076616 predict 10000 1000 100 0.001371 0.000179 0.583326 0.000001 20 full k-means++ 20 300 1 1.000000e-16 0.408030 0.001138 0.000151 0.331414 1.204783 1.215317

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 10000 10000 2 0.081 0.005 0.002 0.0 20 random 0.034 0.002 2.383 2.387 Download Download
3 fit 10000 10000 2 0.204 0.011 0.001 0.0 20 k-means++ 0.087 0.002 2.360 2.361 Download Download
6 fit 10000 10000 100 0.200 0.015 0.040 0.0 20 random 0.126 0.001 1.579 1.579 Download Download
9 fit 10000 10000 100 0.568 0.021 0.014 0.0 20 k-means++ 0.325 0.019 1.750 1.753 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 10000 1000 2 0.001 0.0 0.023 0.0 20 random 0.001 0.0 0.987 0.993 Download Download
2 predict 10000 1 2 0.000 0.0 0.000 0.0 20 random 0.000 0.0 1.248 1.450 Download Download
4 predict 10000 1000 2 0.001 0.0 0.025 0.0 20 k-means++ 0.001 0.0 0.867 0.875 Download Download
5 predict 10000 1 2 0.000 0.0 0.000 0.0 20 k-means++ 0.000 0.0 1.196 1.412 Download Download
7 predict 10000 1000 100 0.001 0.0 0.600 0.0 20 random 0.001 0.0 1.156 1.165 Download Download
8 predict 10000 1 100 0.000 0.0 0.003 0.0 20 random 0.000 0.0 1.300 1.441 Download Download
10 predict 10000 1000 100 0.001 0.0 0.583 0.0 20 k-means++ 0.001 0.0 1.205 1.215 Download Download
11 predict 10000 1 100 0.000 0.0 0.003 0.0 20 k-means++ 0.000 0.0 0.968 1.045 Download Download

Profiling traces can be visualized using Perfetto UI.

Logistic Regression

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: penalty=l2, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1.0, class_weight=nan, random_state=nan, solver=lbfgs, max_iter=100, multi_class=auto, verbose=0, warm_start=False, n_jobs=nan, l1_ratio=nan.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 100 10.091 0.055 0.079 0.000 [20] 1.741 0.049 5.796 5.799 Download Download
3 fit 1000 1000 10000 0.711 0.050 0.112 0.001 [27] 0.691 0.039 1.030 1.031 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 100 0.000 0.0 2.935 0.0 [20] 0.000 0.0 0.707 0.751 Download Download
2 predict 1000000 1 100 0.000 0.0 0.012 0.0 [20] 0.000 0.0 0.292 0.330 Download Download
4 predict 1000 100 10000 0.002 0.0 5.298 0.0 [27] 0.003 0.0 0.536 0.539 Download Download
5 predict 1000 1 10000 0.000 0.0 0.934 0.0 [27] 0.001 0.0 0.121 0.124 Download Download

Profiling traces can be visualized using Perfetto UI.

LinearRegression

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters:

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 1.245 0.009 0.064 0.001 True True deprecated False 1.238 0.004 1.005 1.005 Download Download
3 fit 1000000 1000000 100 7.287 0.027 0.110 0.000 True True deprecated False 0.182 0.001 39.974 39.975 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.01 0.0 8.114 0.0 True True deprecated False 0.016 0.0 0.605 0.605 Download Download
2 predict 1000 10 10000 0.00 0.0 6.419 0.0 True True deprecated False 0.000 0.0 0.437 0.468 Download Download
4 predict 1000000 1000 100 0.00 0.0 6.215 0.0 True True deprecated False 0.000 0.0 0.294 0.308 Download Download
5 predict 1000000 10 100 0.00 0.0 0.119 0.0 True True deprecated False 0.000 0.0 0.425 0.477 Download Download

Profiling traces can be visualized using Perfetto UI.

Ridge

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: alpha=1e-06.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 0.161 0.001 0.496 0.0 0.149 0.001 1.083 1.083 Download Download
3 fit 1000000 1000000 100 1.079 0.008 0.741 0.0 0.217 0.001 4.976 4.976 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.01 0.0 8.227 0.0 0.016 0.0 0.592 0.592 Download Download
2 predict 1000 10 10000 0.00 0.0 6.235 0.0 0.000 0.0 0.428 0.452 Download Download
4 predict 1000000 1000 100 0.00 0.0 5.830 0.0 0.000 0.0 0.462 0.499 Download Download
5 predict 1000000 10 100 0.00 0.0 0.148 0.0 0.000 0.0 0.329 0.370 Download Download

Profiling traces can be visualized using Perfetto UI.

TSNE

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters:

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter angle early_exaggeration init learning_rate method metric min_grad_norm n_components n_iter_without_progress perplexity square_distances verbose mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 3 3.451 0.154 0.0 0.003 1000 0.5 12.0 warn warn barnes_hut euclidean 0.0 2 300 30.0 legacy 0 3.628 0.358 0.951 0.956 Download Download

Profiling traces can be visualized using Perfetto UI.

PCA

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: n_components=10.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 0.420 0.003 0.190 0.0 0.025 0.000 16.534 16.535 Download Download
1 fit 10000 10000 1000 0.371 0.005 0.216 0.0 0.180 0.002 2.062 2.062 Download Download

Profiling traces can be visualized using Perfetto UI.

Benchmark environment information

System

python 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0]
executable /usr/share/miniconda/envs/sklbench/bin/python
machine Linux-5.11.0-1028-azure-x86_64-with-glibc2.10

Dependencies

pip 22.0.4
setuptools 60.9.3
sklearn 1.0.2
numpy 1.22.3
scipy 1.8.0
Cython None
pandas 1.4.1
matplotlib 3.5.1
joblib 1.1.0
threadpoolctl 3.1.0

Threadpool

user_api internal_api prefix filepath version threading_layer architecture num_threads
0 blas openblas libopenblas /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so 0.3.18 pthreads SkylakeX 2
1 openmp openmp libgomp /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 None NaN NaN 2

Cpu_count

cpu_count 2
physical_cpu_count 2