In [1]:
from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_run_dir, default_report_config
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

scikit-learn-intelex (Intel® oneAPI) vs. scikit-learn

In [2]:
run_dir = default_run_dir()
report_config = default_report_config("scikit_learn_intelex_vs_scikit_learn")
In [3]:
# Parameters
report_config = {
    "log_scale": True,
    "benchmarking_estimator_parameters": {
        "sklearn_KNeighborsClassifier_brute_force": [
            "n_neighbors",
            "algorithm",
            "n_jobs",
        ],
        "sklearnex_KNeighborsClassifier_brute_force": [],
        "sklearn_KNeighborsClassifier_kd_tree": ["n_neighbors", "algorithm", "n_jobs"],
        "sklearnex_KNeighborsClassifier_kd_tree": [],
        "sklearn_KMeans_tall": [
            "init",
            "algorithm",
            "n_clusters",
            "max_iter",
            "n_init",
            "tol",
        ],
        "sklearnex_KMeans_tall": [],
        "sklearn_KMeans_short": [
            "init",
            "algorithm",
            "n_clusters",
            "max_iter",
            "n_init",
            "tol",
        ],
        "sklearnex_KMeans_short": [],
        "sklearn_LogisticRegression": [
            "penalty",
            "dual",
            "tol",
            "C",
            "fit_intercept",
            "intercept_scaling",
            "class_weight",
            "random_state",
            "solver",
            "max_iter",
            "multi_class",
            "verbose",
            "warm_start",
            "n_jobs",
            "l1_ratio",
        ],
        "sklearnex_LogisticRegression": [],
        "sklearn_LinearRegression": [],
        "sklearnex_LinearRegression": [],
        "sklearn_Ridge": ["alpha"],
        "sklearnex_Ridge": [],
        "sklearn_TSNE": [],
        "sklearnex_TSNE": [],
        "sklearn_PCA": ["n_components"],
        "sklearnex_PCA": [],
        "sklearn_HistGradientBoostingClassifier_best": [
            "learning_rate",
            "n_iter_no_change",
            "max_leaf_nodes",
            "max_bins",
            "min_samples_leaf",
            "max_iter",
        ],
        "sklearn_HistGradientBoostingClassifier": [
            "learning_rate",
            "n_iter_no_change",
            "max_leaf_nodes",
            "max_bins",
            "min_samples_leaf",
            "max_iter",
            "early_stopping",
        ],
        "lightgbm": [
            "learning_rate",
            "num_leaves",
            "max_bin",
            "min_data_in_leaf",
            "bagging_fraction",
            "feature_fraction_bynode",
            "n_estimators",
        ],
        "xgboost": [
            "validate_parameters",
            "tree_method",
            "use_label_encoder",
            "learning_rate",
            "max_leaves",
            "max_bin",
            "min_child_weight",
            "subsample",
            "colsample_bynode",
            "n_estimators",
        ],
        "catboost_lossguide": [
            "allow_writing_files",
            "grow_policy",
            "bootstrap_type",
            "learning_rate",
            "max_leaves",
            "border_count",
            "min_data_in_leaf",
            "subsample",
            "rsm",
            "max_depth",
            "iterations",
        ],
        "catboost_symmetric": [
            "allow_writing_files",
            "grow_policy",
            "bootstrap_type",
            "learning_rate",
            "border_count",
            "min_data_in_leaf",
            "subsample",
            "rsm",
            "max_depth",
            "iterations",
        ],
    },
    "estimators": [
        {
            "title": "KNeighborsClassifier (brute force)",
            "name": "KNeighborsClassifier_brute_force",
            "split_bars_by_parameters": ["n_jobs"],
        },
        {
            "title": "KNeighborsClassifier (KD tree)",
            "name": "KNeighborsClassifier_kd_tree",
            "split_bars_by_parameters": ["n_jobs"],
        },
        {"title": "KMeans (tall)", "name": "KMeans_tall"},
        {"title": "KMeans (short)", "name": "KMeans_short"},
        {"title": "Logistic Regression", "name": "LogisticRegression"},
        {"title": "LinearRegression", "name": "LinearRegression"},
        {"title": "Ridge", "name": "Ridge"},
        {"title": "TSNE", "name": "TSNE"},
        {"title": "PCA", "name": "PCA"},
    ],
    "other_library": "sklearnex",
    "parameters": {"n_cols": 2},
}
run_dir = "./results/local/20220316T125621/"
In [4]:
run_dir = Path(run_dir)
In [5]:
reporting = HpMatchReporting(**report_config, run_dir=run_dir)
reporting.make_report()

We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up time scikit-learn / time sklearnex. For instance, a speed-up of 2 means that sklearnex is twice as fast as scikit-learn for a given set of parameters and a given dataset.

KNeighborsClassifier (brute force)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=brute.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 1.055 0.020 0.076 0.0 -1 1 0.054 0.001 19.418 19.419 Download Download
3 fit 100000 100000 100 1.045 0.016 0.077 0.0 -1 5 0.047 0.000 22.378 22.379 Download Download
6 fit 100000 100000 100 1.040 0.009 0.077 0.0 1 100 0.047 0.000 21.978 21.978 Download Download
9 fit 100000 100000 100 1.047 0.022 0.076 0.0 -1 100 0.053 0.000 19.765 19.765 Download Download
12 fit 100000 100000 100 1.061 0.021 0.075 0.0 1 5 0.047 0.000 22.473 22.474 Download Download
15 fit 100000 100000 100 1.041 0.016 0.077 0.0 1 1 0.053 0.000 19.699 19.700 Download Download
18 fit 100000 100000 2 0.042 0.001 0.038 0.0 -1 1 0.009 0.000 4.910 4.913 Download Download
21 fit 100000 100000 2 0.049 0.001 0.033 0.0 -1 5 0.009 0.000 5.647 5.651 Download Download
24 fit 100000 100000 2 0.047 0.000 0.034 0.0 1 100 0.009 0.000 5.492 5.496 Download Download
27 fit 100000 100000 2 0.047 0.000 0.034 0.0 -1 100 0.009 0.000 5.433 5.437 Download Download
30 fit 100000 100000 2 0.047 0.000 0.034 0.0 1 5 0.009 0.000 5.563 5.566 Download Download
33 fit 100000 100000 2 0.048 0.000 0.034 0.0 1 1 0.009 0.000 5.598 5.601 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 100000 1000 100 2.425 0.121 0.000 0.002 -1 1 0.172 0.001 14.106 14.107 Download Download
2 predict 100000 1 100 0.024 0.002 0.000 0.024 -1 1 0.009 0.000 2.579 2.581 Download Download
4 predict 100000 1000 100 3.015 0.064 0.000 0.003 -1 5 0.175 0.001 17.201 17.201 Download Download
5 predict 100000 1 100 0.027 0.002 0.000 0.027 -1 5 0.010 0.002 2.707 2.765 Download Download
7 predict 100000 1000 100 1.912 0.006 0.000 0.002 1 100 0.210 0.002 9.123 9.124 Download Download
8 predict 100000 1 100 0.021 0.000 0.000 0.021 1 100 0.009 0.000 2.273 2.274 Download Download
10 predict 100000 1000 100 3.229 0.141 0.000 0.003 -1 100 0.212 0.002 15.249 15.250 Download Download
11 predict 100000 1 100 0.026 0.003 0.000 0.026 -1 100 0.009 0.000 2.793 2.796 Download Download
13 predict 100000 1000 100 1.835 0.010 0.000 0.002 1 5 0.175 0.001 10.510 10.510 Download Download
14 predict 100000 1 100 0.020 0.000 0.000 0.020 1 5 0.009 0.000 2.156 2.157 Download Download
16 predict 100000 1000 100 1.209 0.015 0.001 0.001 1 1 0.171 0.000 7.067 7.067 Download Download
17 predict 100000 1 100 0.020 0.001 0.000 0.020 1 1 0.009 0.000 2.260 2.262 Download Download
19 predict 100000 1000 2 1.879 0.033 0.000 0.002 -1 1 0.026 0.000 72.738 72.740 Download Download
20 predict 100000 1 2 0.006 0.004 0.000 0.006 -1 1 0.001 0.000 7.577 7.758 Download Download
22 predict 100000 1000 2 2.675 0.083 0.000 0.003 -1 5 0.028 0.000 96.998 97.003 Download Download
23 predict 100000 1 2 0.005 0.002 0.000 0.005 -1 5 0.001 0.000 6.811 6.914 Download Download
25 predict 100000 1000 2 1.886 0.005 0.000 0.002 1 100 0.062 0.000 30.497 30.498 Download Download
26 predict 100000 1 2 0.003 0.000 0.000 0.003 1 100 0.001 0.000 2.891 2.927 Download Download
28 predict 100000 1000 2 2.611 0.033 0.000 0.003 -1 100 0.062 0.001 42.091 42.102 Download Download
29 predict 100000 1 2 0.007 0.003 0.000 0.007 -1 100 0.001 0.000 7.636 7.735 Download Download
31 predict 100000 1000 2 1.900 0.009 0.000 0.002 1 5 0.027 0.000 69.657 69.659 Download Download
32 predict 100000 1 2 0.003 0.000 0.000 0.003 1 5 0.001 0.000 3.328 3.393 Download Download
34 predict 100000 1000 2 1.133 0.006 0.000 0.001 1 1 0.026 0.000 43.041 43.047 Download Download
35 predict 100000 1 2 0.002 0.000 0.000 0.002 1 1 0.001 0.000 2.275 2.317 Download Download

Profiling traces can be visualized using Perfetto UI.

KNeighborsClassifier (KD tree)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=kd_tree.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 10 2.944 0.047 0.027 0.0 -1 1 0.738 0.009 3.988 3.988 Download Download
3 fit 1000000 1000000 10 2.963 0.055 0.027 0.0 -1 5 0.733 0.006 4.040 4.040 Download Download
6 fit 1000000 1000000 10 3.000 0.090 0.027 0.0 1 100 0.741 0.011 4.048 4.049 Download Download
9 fit 1000000 1000000 10 3.005 0.055 0.027 0.0 -1 100 0.738 0.006 4.074 4.074 Download Download
12 fit 1000000 1000000 10 2.982 0.076 0.027 0.0 1 5 0.743 0.014 4.013 4.013 Download Download
15 fit 1000000 1000000 10 3.061 0.021 0.026 0.0 1 1 0.733 0.007 4.177 4.177 Download Download
18 fit 1000 1000 2 0.001 0.000 0.029 0.0 -1 1 0.001 0.000 0.583 0.588 Download Download
21 fit 1000 1000 2 0.001 0.000 0.029 0.0 -1 5 0.001 0.000 0.583 0.589 Download Download
24 fit 1000 1000 2 0.001 0.000 0.029 0.0 1 100 0.001 0.000 0.559 0.567 Download Download
27 fit 1000 1000 2 0.001 0.000 0.030 0.0 -1 100 0.001 0.000 0.574 0.582 Download Download
30 fit 1000 1000 2 0.001 0.000 0.029 0.0 1 5 0.001 0.000 0.582 0.589 Download Download
33 fit 1000 1000 2 0.001 0.000 0.030 0.0 1 1 0.001 0.000 0.550 0.561 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 10 0.459 0.006 0.000 0.000 -1 1 0.112 0.002 4.093 4.093 Download Download
2 predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 1 0.000 0.000 9.831 10.984 Download Download
4 predict 1000000 1000 10 0.795 0.013 0.000 0.001 -1 5 0.201 0.001 3.961 3.961 Download Download
5 predict 1000000 1 10 0.003 0.001 0.000 0.003 -1 5 0.000 0.000 9.240 10.343 Download Download
7 predict 1000000 1000 10 5.027 0.042 0.000 0.005 1 100 0.581 0.003 8.656 8.656 Download Download
8 predict 1000000 1 10 0.003 0.001 0.000 0.003 1 100 0.001 0.000 4.175 4.512 Download Download
10 predict 1000000 1000 10 2.666 0.067 0.000 0.003 -1 100 0.586 0.004 4.552 4.552 Download Download
11 predict 1000000 1 10 0.005 0.001 0.000 0.005 -1 100 0.001 0.000 8.340 8.900 Download Download
13 predict 1000000 1000 10 1.476 0.020 0.000 0.001 1 5 0.200 0.003 7.381 7.382 Download Download
14 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 5 0.000 0.000 3.605 4.007 Download Download
16 predict 1000000 1000 10 0.790 0.002 0.000 0.001 1 1 0.112 0.001 7.039 7.039 Download Download
17 predict 1000000 1 10 0.001 0.000 0.000 0.001 1 1 0.000 0.000 3.449 3.812 Download Download
19 predict 1000 1000 2 0.022 0.001 0.001 0.000 -1 1 0.001 0.000 41.536 42.603 Download Download
20 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 1 0.000 0.000 16.203 18.885 Download Download
22 predict 1000 1000 2 0.023 0.000 0.001 0.000 -1 5 0.001 0.000 28.599 29.065 Download Download
23 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 5 0.000 0.000 15.828 18.891 Download Download
25 predict 1000 1000 2 0.035 0.003 0.000 0.000 1 100 0.005 0.000 7.700 7.709 Download Download
26 predict 1000 1 2 0.001 0.000 0.000 0.001 1 100 0.000 0.000 3.829 4.538 Download Download
28 predict 1000 1000 2 0.033 0.000 0.000 0.000 -1 100 0.005 0.000 7.076 7.094 Download Download
29 predict 1000 1 2 0.002 0.000 0.000 0.002 -1 100 0.000 0.000 14.958 17.871 Download Download
31 predict 1000 1000 2 0.021 0.000 0.001 0.000 1 5 0.001 0.000 27.813 28.300 Download Download
32 predict 1000 1 2 0.001 0.000 0.000 0.001 1 5 0.000 0.000 4.287 4.871 Download Download
34 predict 1000 1000 2 0.020 0.000 0.001 0.000 1 1 0.001 0.000 37.010 38.215 Download Download
35 predict 1000 1 2 0.001 0.000 0.000 0.001 1 1 0.000 0.000 4.031 4.773 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (tall)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=full, n_clusters=3, max_iter=30, n_init=1, tol=1e-16.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 2 0.494 0.004 0.032 0.0 30 random 0.369 0.023 1.337 1.340 Download Download
3 fit 1000000 1000000 2 0.556 0.005 0.029 0.0 30 k-means++ 0.407 0.014 1.364 1.365 Download Download
6 fit 1000000 1000000 100 4.773 0.225 0.168 0.0 30 random 2.859 0.014 1.670 1.670 Download Download
9 fit 1000000 1000000 100 4.902 0.057 0.163 0.0 30 k-means++ 3.031 0.008 1.618 1.618 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 2 0.0 0.0 0.066 0.0 30 random 0.0 0.0 1.067 1.216 Download Download
2 predict 1000000 1 2 0.0 0.0 0.000 0.0 30 random 0.0 0.0 1.269 1.543 Download Download
4 predict 1000000 1000 2 0.0 0.0 0.065 0.0 30 k-means++ 0.0 0.0 1.106 1.272 Download Download
5 predict 1000000 1 2 0.0 0.0 0.000 0.0 30 k-means++ 0.0 0.0 1.228 1.467 Download Download
7 predict 1000000 1000 100 0.0 0.0 1.723 0.0 30 random 0.0 0.0 1.058 1.125 Download Download
8 predict 1000000 1 100 0.0 0.0 0.004 0.0 30 random 0.0 0.0 1.193 1.442 Download Download
10 predict 1000000 1000 100 0.0 0.0 1.861 0.0 30 k-means++ 0.0 0.0 1.320 1.508 Download Download
11 predict 1000000 1 100 0.0 0.0 0.004 0.0 30 k-means++ 0.0 0.0 1.158 1.384 Download Download

Profiling traces can be visualized using Perfetto UI.

KMeans (short)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=full, n_clusters=300, max_iter=20, n_init=1, tol=1e-16.

Mismatches between validation scores

WARNING! Mismatch between validation scores for 2 predictions (25.0%).
The observed differences can be found in the diff_adjusted_rand_scores column.
The chosen difference threshold is 0.01 for adjusted_rand_score.
The biggest difference is 0.077 for adjusted_rand_score.
See details in the dataframe below.
estimator library diff_adjusted_rand_scores function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter algorithm init max_iter n_clusters n_init tol adjusted_rand_score_sklearn mean_duration_sklearnex std_duration_sklearnex adjusted_rand_score_sklearnex speedup std_speedup
7 sklearn_KMeans_short sklearn 0.074768 predict 10000 1000 100 0.001314 0.000299 0.608838 0.000001 20 full random 20 300 1 1.000000e-16 0.222701 0.001151 0.000208 0.297469 1.141138 1.159636
10 sklearn_KMeans_short sklearn 0.076616 predict 10000 1000 100 0.001395 0.000322 0.573650 0.000001 20 full k-means++ 20 300 1 1.000000e-16 0.408030 0.001152 0.000190 0.331414 1.210810 1.227103

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 10000 10000 2 0.077 0.001 0.002 0.0 20 random 0.031 0.001 2.466 2.466 Download Download
3 fit 10000 10000 2 0.191 0.001 0.001 0.0 20 k-means++ 0.086 0.001 2.213 2.214 Download Download
6 fit 10000 10000 100 0.195 0.003 0.041 0.0 20 random 0.127 0.001 1.540 1.540 Download Download
9 fit 10000 10000 100 0.551 0.008 0.015 0.0 20 k-means++ 0.315 0.004 1.749 1.750 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 10000 1000 2 0.001 0.0 0.024 0.0 20 random 0.001 0.0 0.931 0.948 Download Download
2 predict 10000 1 2 0.000 0.0 0.000 0.0 20 random 0.000 0.0 1.204 1.445 Download Download
4 predict 10000 1000 2 0.001 0.0 0.024 0.0 20 k-means++ 0.001 0.0 0.963 0.986 Download Download
5 predict 10000 1 2 0.000 0.0 0.000 0.0 20 k-means++ 0.000 0.0 1.318 1.606 Download Download
7 predict 10000 1000 100 0.001 0.0 0.609 0.0 20 random 0.001 0.0 1.141 1.160 Download Download
8 predict 10000 1 100 0.000 0.0 0.003 0.0 20 random 0.000 0.0 1.210 1.379 Download Download
10 predict 10000 1000 100 0.001 0.0 0.574 0.0 20 k-means++ 0.001 0.0 1.211 1.227 Download Download
11 predict 10000 1 100 0.000 0.0 0.003 0.0 20 k-means++ 0.000 0.0 1.306 1.472 Download Download

Profiling traces can be visualized using Perfetto UI.

Logistic Regression

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: penalty=l2, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1.0, class_weight=nan, random_state=nan, solver=lbfgs, max_iter=100, multi_class=auto, verbose=0, warm_start=False, n_jobs=nan, l1_ratio=nan.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000000 1000000 100 10.724 0.013 0.075 0.000 [20] 2.011 0.008 5.332 5.332 Download Download
3 fit 1000 1000 10000 0.813 0.056 0.098 0.001 [27] 0.869 0.060 0.935 0.938 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000000 1000 100 0.000 0.0 2.920 0.0 [20] 0.000 0.0 0.666 0.723 Download Download
2 predict 1000000 1 100 0.000 0.0 0.012 0.0 [20] 0.000 0.0 0.274 0.324 Download Download
4 predict 1000 100 10000 0.002 0.0 5.151 0.0 [27] 0.003 0.0 0.507 0.513 Download Download
5 predict 1000 1 10000 0.000 0.0 0.896 0.0 [27] 0.001 0.0 0.119 0.123 Download Download

Profiling traces can be visualized using Perfetto UI.

LinearRegression

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters:

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 1.306 0.007 0.061 0.001 True True deprecated False 1.615 0.040 0.809 0.809 Download Download
3 fit 1000000 1000000 100 8.661 0.084 0.092 0.000 True True deprecated False 0.195 0.002 44.314 44.315 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.012 0.0 6.922 0.0 True True deprecated False 0.019 0.0 0.600 0.600 Download Download
2 predict 1000 10 10000 0.000 0.0 5.366 0.0 True True deprecated False 0.000 0.0 0.447 0.482 Download Download
4 predict 1000000 1000 100 0.000 0.0 5.339 0.0 True True deprecated False 0.000 0.0 0.345 0.374 Download Download
5 predict 1000000 10 100 0.000 0.0 0.132 0.0 True True deprecated False 0.000 0.0 0.372 0.437 Download Download

Profiling traces can be visualized using Perfetto UI.

Ridge

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: alpha=1e-06.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 10000 0.174 0.002 0.459 0.0 0.194 0.005 0.897 0.898 Download Download
3 fit 1000000 1000000 100 1.140 0.024 0.701 0.0 0.242 0.012 4.720 4.725 Download Download

predict

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
1 predict 1000 1000 10000 0.012 0.0 6.418 0.0 0.02 0.0 0.627 0.627 Download Download
2 predict 1000 10 10000 0.000 0.0 4.762 0.0 0.00 0.0 0.469 0.502 Download Download
4 predict 1000000 1000 100 0.000 0.0 5.068 0.0 0.00 0.0 0.466 0.513 Download Download
5 predict 1000000 10 100 0.000 0.0 0.115 0.0 0.00 0.0 0.398 0.459 Download Download

Profiling traces can be visualized using Perfetto UI.

TSNE

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters:

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter angle early_exaggeration init learning_rate method metric min_grad_norm n_components n_iter_without_progress perplexity square_distances verbose mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 1000 1000 3 3.46 0.156 0.0 0.003 1000 0.5 12.0 warn warn barnes_hut euclidean 0.0 2 300 30.0 legacy 0 3.493 0.233 0.99 0.993 Download Download

Profiling traces can be visualized using Perfetto UI.

PCA

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: n_components=10.

Raw results

fit

function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup sklearn_profiling sklearnex_profiling
0 fit 100000 100000 100 0.480 0.005 0.167 0.0 0.027 0.000 17.870 17.871 Download Download
1 fit 10000 10000 1000 0.444 0.005 0.180 0.0 0.187 0.003 2.372 2.373 Download Download

Profiling traces can be visualized using Perfetto UI.

Benchmark environment information

System

python 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0]
executable /usr/share/miniconda/envs/sklbench/bin/python
machine Linux-5.11.0-1028-azure-x86_64-with-glibc2.10

Dependencies

pip 22.0.4
setuptools 60.9.3
sklearn 1.0.2
numpy 1.22.3
scipy 1.8.0
Cython None
pandas 1.4.1
matplotlib 3.5.1
joblib 1.1.0
threadpoolctl 3.1.0

Threadpool

user_api internal_api prefix filepath version threading_layer architecture num_threads
0 blas openblas libopenblas /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so 0.3.18 pthreads SkylakeX 2
1 openmp openmp libgomp /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 None NaN NaN 2

Cpu_count

cpu_count 2
physical_cpu_count 2