from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_run_dir, default_report_config
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
run_dir = Path(run_dir)
reporting = HpMatchReporting(**report_config, run_dir=run_dir)
reporting.make_report()
We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up
time scikit-learn / time sklearnex
. For instance, a speed-up of 2 means that sklearnex is twice as fast as scikit-learn for a given set of parameters and a given dataset.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=brute
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 100000 | 100000 | 100 | 1.220 | 0.012 | 0.066 | 0.0 | -1 | 1 | 0.052 | 0.001 | 23.535 | 23.537 |
3 | Download | Download | fit | 100000 | 100000 | 100 | 1.054 | 0.026 | 0.076 | 0.0 | -1 | 5 | 0.046 | 0.000 | 22.701 | 22.701 |
6 | Download | Download | fit | 100000 | 100000 | 100 | 1.189 | 0.012 | 0.067 | 0.0 | 1 | 100 | 0.056 | 0.011 | 21.330 | 21.724 |
9 | Download | Download | fit | 100000 | 100000 | 100 | 1.198 | 0.004 | 0.067 | 0.0 | -1 | 100 | 0.052 | 0.000 | 23.093 | 23.094 |
12 | Download | Download | fit | 100000 | 100000 | 100 | 1.064 | 0.020 | 0.075 | 0.0 | 1 | 5 | 0.052 | 0.000 | 20.595 | 20.595 |
15 | Download | Download | fit | 100000 | 100000 | 100 | 1.053 | 0.019 | 0.076 | 0.0 | 1 | 1 | 0.049 | 0.003 | 21.573 | 21.611 |
18 | Download | Download | fit | 100000 | 100000 | 2 | 0.048 | 0.000 | 0.033 | 0.0 | -1 | 1 | 0.008 | 0.000 | 6.095 | 6.099 |
21 | Download | Download | fit | 100000 | 100000 | 2 | 0.046 | 0.001 | 0.035 | 0.0 | -1 | 5 | 0.008 | 0.000 | 5.972 | 5.978 |
24 | Download | Download | fit | 100000 | 100000 | 2 | 0.049 | 0.000 | 0.033 | 0.0 | 1 | 100 | 0.008 | 0.000 | 6.322 | 6.328 |
27 | Download | Download | fit | 100000 | 100000 | 2 | 0.049 | 0.001 | 0.033 | 0.0 | -1 | 100 | 0.008 | 0.000 | 6.173 | 6.178 |
30 | Download | Download | fit | 100000 | 100000 | 2 | 0.048 | 0.001 | 0.033 | 0.0 | 1 | 5 | 0.008 | 0.000 | 6.102 | 6.106 |
33 | Download | Download | fit | 100000 | 100000 | 2 | 0.043 | 0.000 | 0.037 | 0.0 | 1 | 1 | 0.008 | 0.000 | 5.585 | 5.590 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 100000 | 1000 | 100 | 2.511 | 0.099 | 0.000 | 0.003 | -1 | 1 | 0.172 | 0.003 | 14.591 | 14.593 |
2 | Download | Download | predict | 100000 | 1 | 100 | 0.022 | 0.002 | 0.000 | 0.022 | -1 | 1 | 0.009 | 0.000 | 2.383 | 2.385 |
4 | Download | Download | predict | 100000 | 1000 | 100 | 2.983 | 0.072 | 0.000 | 0.003 | -1 | 5 | 0.174 | 0.002 | 17.169 | 17.171 |
5 | Download | Download | predict | 100000 | 1 | 100 | 0.023 | 0.002 | 0.000 | 0.023 | -1 | 5 | 0.009 | 0.000 | 2.565 | 2.565 |
7 | Download | Download | predict | 100000 | 1000 | 100 | 1.923 | 0.009 | 0.000 | 0.002 | 1 | 100 | 0.211 | 0.002 | 9.098 | 9.098 |
8 | Download | Download | predict | 100000 | 1 | 100 | 0.020 | 0.000 | 0.000 | 0.020 | 1 | 100 | 0.009 | 0.000 | 2.142 | 2.142 |
10 | Download | Download | predict | 100000 | 1000 | 100 | 2.689 | 0.057 | 0.000 | 0.003 | -1 | 100 | 0.214 | 0.002 | 12.586 | 12.587 |
11 | Download | Download | predict | 100000 | 1 | 100 | 0.025 | 0.003 | 0.000 | 0.025 | -1 | 100 | 0.009 | 0.000 | 2.695 | 2.696 |
13 | Download | Download | predict | 100000 | 1000 | 100 | 1.814 | 0.013 | 0.000 | 0.002 | 1 | 5 | 0.179 | 0.002 | 10.137 | 10.138 |
14 | Download | Download | predict | 100000 | 1 | 100 | 0.021 | 0.000 | 0.000 | 0.021 | 1 | 5 | 0.009 | 0.000 | 2.236 | 2.236 |
16 | Download | Download | predict | 100000 | 1000 | 100 | 1.211 | 0.020 | 0.001 | 0.001 | 1 | 1 | 0.175 | 0.003 | 6.928 | 6.929 |
17 | Download | Download | predict | 100000 | 1 | 100 | 0.020 | 0.000 | 0.000 | 0.020 | 1 | 1 | 0.009 | 0.000 | 2.109 | 2.110 |
19 | Download | Download | predict | 100000 | 1000 | 2 | 1.929 | 0.026 | 0.000 | 0.002 | -1 | 1 | 0.026 | 0.002 | 73.116 | 73.267 |
20 | Download | Download | predict | 100000 | 1 | 2 | 0.005 | 0.002 | 0.000 | 0.005 | -1 | 1 | 0.001 | 0.000 | 6.017 | 6.211 |
22 | Download | Download | predict | 100000 | 1000 | 2 | 2.677 | 0.029 | 0.000 | 0.003 | -1 | 5 | 0.027 | 0.001 | 100.824 | 100.874 |
23 | Download | Download | predict | 100000 | 1 | 2 | 0.006 | 0.002 | 0.000 | 0.006 | -1 | 5 | 0.001 | 0.000 | 6.767 | 6.897 |
25 | Download | Download | predict | 100000 | 1000 | 2 | 1.913 | 0.008 | 0.000 | 0.002 | 1 | 100 | 0.058 | 0.001 | 32.718 | 32.725 |
26 | Download | Download | predict | 100000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | 1 | 100 | 0.001 | 0.000 | 3.049 | 3.104 |
28 | Download | Download | predict | 100000 | 1000 | 2 | 2.782 | 0.059 | 0.000 | 0.003 | -1 | 100 | 0.059 | 0.001 | 46.812 | 46.819 |
29 | Download | Download | predict | 100000 | 1 | 2 | 0.006 | 0.002 | 0.000 | 0.006 | -1 | 100 | 0.001 | 0.000 | 6.103 | 6.219 |
31 | Download | Download | predict | 100000 | 1000 | 2 | 1.759 | 0.003 | 0.000 | 0.002 | 1 | 5 | 0.027 | 0.001 | 65.795 | 65.851 |
32 | Download | Download | predict | 100000 | 1 | 2 | 0.002 | 0.000 | 0.000 | 0.002 | 1 | 5 | 0.001 | 0.000 | 2.809 | 2.879 |
34 | Download | Download | predict | 100000 | 1000 | 2 | 1.098 | 0.009 | 0.000 | 0.001 | 1 | 1 | 0.025 | 0.001 | 43.692 | 43.708 |
35 | Download | Download | predict | 100000 | 1 | 2 | 0.002 | 0.000 | 0.000 | 0.002 | 1 | 1 | 0.001 | 0.000 | 2.165 | 2.215 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=kd_tree
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000000 | 1000000 | 10 | 2.918 | 0.082 | 0.027 | 0.0 | -1 | 1 | 0.754 | 0.014 | 3.868 | 3.869 |
3 | Download | Download | fit | 1000000 | 1000000 | 10 | 3.155 | 0.106 | 0.025 | 0.0 | -1 | 5 | 0.784 | 0.020 | 4.025 | 4.026 |
6 | Download | Download | fit | 1000000 | 1000000 | 10 | 2.881 | 0.078 | 0.028 | 0.0 | 1 | 100 | 0.748 | 0.011 | 3.851 | 3.852 |
9 | Download | Download | fit | 1000000 | 1000000 | 10 | 3.123 | 0.053 | 0.026 | 0.0 | -1 | 100 | 0.758 | 0.018 | 4.119 | 4.121 |
12 | Download | Download | fit | 1000000 | 1000000 | 10 | 3.197 | 0.059 | 0.025 | 0.0 | 1 | 5 | 0.718 | 0.008 | 4.454 | 4.454 |
15 | Download | Download | fit | 1000000 | 1000000 | 10 | 3.019 | 0.065 | 0.026 | 0.0 | 1 | 1 | 0.734 | 0.011 | 4.113 | 4.113 |
18 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.032 | 0.0 | -1 | 1 | 0.001 | 0.000 | 0.511 | 0.518 |
21 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.032 | 0.0 | -1 | 5 | 0.001 | 0.000 | 0.524 | 0.529 |
24 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.029 | 0.0 | 1 | 100 | 0.001 | 0.000 | 0.591 | 0.599 |
27 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.029 | 0.0 | -1 | 100 | 0.001 | 0.000 | 0.583 | 0.594 |
30 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.030 | 0.0 | 1 | 5 | 0.001 | 0.000 | 0.585 | 0.595 |
33 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.028 | 0.0 | 1 | 1 | 0.001 | 0.000 | 0.627 | 0.636 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 1000000 | 1000 | 10 | 0.468 | 0.006 | 0.000 | 0.000 | -1 | 1 | 0.112 | 0.002 | 4.163 | 4.164 |
2 | Download | Download | predict | 1000000 | 1 | 10 | 0.003 | 0.001 | 0.000 | 0.003 | -1 | 1 | 0.000 | 0.000 | 9.499 | 10.642 |
4 | Download | Download | predict | 1000000 | 1000 | 10 | 0.814 | 0.013 | 0.000 | 0.001 | -1 | 5 | 0.199 | 0.003 | 4.087 | 4.088 |
5 | Download | Download | predict | 1000000 | 1 | 10 | 0.003 | 0.001 | 0.000 | 0.003 | -1 | 5 | 0.000 | 0.000 | 9.355 | 10.331 |
7 | Download | Download | predict | 1000000 | 1000 | 10 | 4.909 | 0.038 | 0.000 | 0.005 | 1 | 100 | 0.591 | 0.004 | 8.307 | 8.307 |
8 | Download | Download | predict | 1000000 | 1 | 10 | 0.002 | 0.001 | 0.000 | 0.002 | 1 | 100 | 0.001 | 0.000 | 4.208 | 4.515 |
10 | Download | Download | predict | 1000000 | 1000 | 10 | 2.663 | 0.017 | 0.000 | 0.003 | -1 | 100 | 0.583 | 0.005 | 4.567 | 4.567 |
11 | Download | Download | predict | 1000000 | 1 | 10 | 0.005 | 0.001 | 0.000 | 0.005 | -1 | 100 | 0.001 | 0.000 | 7.857 | 8.425 |
13 | Download | Download | predict | 1000000 | 1000 | 10 | 1.507 | 0.017 | 0.000 | 0.002 | 1 | 5 | 0.199 | 0.002 | 7.557 | 7.558 |
14 | Download | Download | predict | 1000000 | 1 | 10 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 5 | 0.000 | 0.000 | 3.611 | 3.934 |
16 | Download | Download | predict | 1000000 | 1000 | 10 | 0.780 | 0.007 | 0.000 | 0.001 | 1 | 1 | 0.111 | 0.002 | 6.997 | 6.998 |
17 | Download | Download | predict | 1000000 | 1 | 10 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 1 | 0.000 | 0.000 | 3.586 | 3.997 |
19 | Download | Download | predict | 1000 | 1000 | 2 | 0.022 | 0.001 | 0.001 | 0.000 | -1 | 1 | 0.001 | 0.000 | 42.246 | 43.256 |
20 | Download | Download | predict | 1000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | -1 | 1 | 0.000 | 0.000 | 17.055 | 19.135 |
22 | Download | Download | predict | 1000 | 1000 | 2 | 0.024 | 0.002 | 0.001 | 0.000 | -1 | 5 | 0.001 | 0.000 | 30.638 | 31.333 |
23 | Download | Download | predict | 1000 | 1 | 2 | 0.002 | 0.000 | 0.000 | 0.002 | -1 | 5 | 0.000 | 0.000 | 14.543 | 17.747 |
25 | Download | Download | predict | 1000 | 1000 | 2 | 0.036 | 0.003 | 0.000 | 0.000 | 1 | 100 | 0.005 | 0.000 | 7.533 | 7.554 |
26 | Download | Download | predict | 1000 | 1 | 2 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 100 | 0.000 | 0.000 | 3.579 | 4.330 |
28 | Download | Download | predict | 1000 | 1000 | 2 | 0.034 | 0.000 | 0.000 | 0.000 | -1 | 100 | 0.005 | 0.000 | 7.267 | 7.280 |
29 | Download | Download | predict | 1000 | 1 | 2 | 0.002 | 0.000 | 0.000 | 0.002 | -1 | 100 | 0.000 | 0.000 | 14.097 | 16.852 |
31 | Download | Download | predict | 1000 | 1000 | 2 | 0.021 | 0.000 | 0.001 | 0.000 | 1 | 5 | 0.001 | 0.000 | 25.936 | 26.460 |
32 | Download | Download | predict | 1000 | 1 | 2 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 5 | 0.000 | 0.000 | 3.699 | 4.585 |
34 | Download | Download | predict | 1000 | 1000 | 2 | 0.020 | 0.000 | 0.001 | 0.000 | 1 | 1 | 0.000 | 0.000 | 40.148 | 41.164 |
35 | Download | Download | predict | 1000 | 1 | 2 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 1 | 0.000 | 0.000 | 3.977 | 4.638 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=full
, n_clusters=3
, max_iter=30
, n_init=1
, tol=1e-16
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000000 | 1000000 | 2 | 0.495 | 0.009 | 0.032 | 0.0 | 30 | random | 0.383 | 0.021 | 1.291 | 1.293 |
3 | Download | Download | fit | 1000000 | 1000000 | 2 | 0.569 | 0.008 | 0.028 | 0.0 | 30 | k-means++ | 0.416 | 0.015 | 1.368 | 1.369 |
6 | Download | Download | fit | 1000000 | 1000000 | 100 | 4.735 | 0.286 | 0.169 | 0.0 | 30 | random | 5.076 | 0.066 | 0.933 | 0.933 |
9 | Download | Download | fit | 1000000 | 1000000 | 100 | 4.938 | 0.087 | 0.162 | 0.0 | 30 | k-means++ | 5.417 | 0.070 | 0.912 | 0.912 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 1000000 | 1000 | 2 | 0.0 | 0.0 | 0.066 | 0.0 | 30 | random | 0.000 | 0.0 | 1.020 | 1.148 |
2 | Download | Download | predict | 1000000 | 1 | 2 | 0.0 | 0.0 | 0.000 | 0.0 | 30 | random | 0.000 | 0.0 | 1.210 | 1.467 |
4 | Download | Download | predict | 1000000 | 1000 | 2 | 0.0 | 0.0 | 0.064 | 0.0 | 30 | k-means++ | 0.000 | 0.0 | 1.057 | 1.195 |
5 | Download | Download | predict | 1000000 | 1 | 2 | 0.0 | 0.0 | 0.000 | 0.0 | 30 | k-means++ | 0.000 | 0.0 | 1.259 | 1.504 |
7 | Download | Download | predict | 1000000 | 1000 | 100 | 0.0 | 0.0 | 1.824 | 0.0 | 30 | random | 0.001 | 0.0 | 0.581 | 0.598 |
8 | Download | Download | predict | 1000000 | 1 | 100 | 0.0 | 0.0 | 0.004 | 0.0 | 30 | random | 0.000 | 0.0 | 0.466 | 0.493 |
10 | Download | Download | predict | 1000000 | 1000 | 100 | 0.0 | 0.0 | 1.702 | 0.0 | 30 | k-means++ | 0.001 | 0.0 | 0.624 | 0.644 |
11 | Download | Download | predict | 1000000 | 1 | 100 | 0.0 | 0.0 | 0.004 | 0.0 | 30 | k-means++ | 0.000 | 0.0 | 0.482 | 0.518 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=full
, n_clusters=300
, max_iter=20
, n_init=1
, tol=1e-16
.
estimator | library | diff_adjusted_rand_scores | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | algorithm | init | max_iter | n_clusters | n_init | tol | adjusted_rand_score_sklearn | mean_duration_sklearnex | std_duration_sklearnex | adjusted_rand_score_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | sklearn_KMeans_short | sklearn | 0.074768 | predict | 10000 | 1000 | 100 | 0.003560 | 0.000206 | 0.224743 | 0.000004 | 20 | full | random | 20 | 300 | 1 | 1.000000e-16 | 0.222701 | 0.001569 | 0.000277 | 0.297469 | 2.268107 | 2.303240 |
10 | sklearn_KMeans_short | sklearn | 0.076616 | predict | 10000 | 1000 | 100 | 0.002886 | 0.000325 | 0.277240 | 0.000003 | 20 | full | k-means++ | 20 | 300 | 1 | 1.000000e-16 | 0.408030 | 0.002307 | 0.000170 | 0.331414 | 1.250995 | 1.254393 |
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 10000 | 10000 | 2 | 0.228 | 0.001 | 0.001 | 0.0 | 20 | random | 0.076 | 0.001 | 3.018 | 3.018 |
3 | Download | Download | fit | 10000 | 10000 | 2 | 0.565 | 0.001 | 0.000 | 0.0 | 20 | k-means++ | 0.160 | 0.001 | 3.539 | 3.539 |
6 | Download | Download | fit | 10000 | 10000 | 100 | 0.559 | 0.001 | 0.014 | 0.0 | 20 | random | 0.333 | 0.002 | 1.677 | 1.677 |
9 | Download | Download | fit | 10000 | 10000 | 100 | 1.178 | 0.066 | 0.007 | 0.0 | 20 | k-means++ | 0.635 | 0.006 | 1.857 | 1.857 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 10000 | 1000 | 2 | 0.002 | 0.0 | 0.009 | 0.000 | 20 | random | 0.001 | 0.0 | 1.759 | 1.790 |
2 | Download | Download | predict | 10000 | 1 | 2 | 0.001 | 0.0 | 0.000 | 0.001 | 20 | random | 0.000 | 0.0 | 3.271 | 3.971 |
4 | Download | Download | predict | 10000 | 1000 | 2 | 0.002 | 0.0 | 0.009 | 0.000 | 20 | k-means++ | 0.001 | 0.0 | 1.901 | 1.934 |
5 | Download | Download | predict | 10000 | 1 | 2 | 0.001 | 0.0 | 0.000 | 0.001 | 20 | k-means++ | 0.000 | 0.0 | 3.380 | 4.080 |
7 | Download | Download | predict | 10000 | 1000 | 100 | 0.004 | 0.0 | 0.225 | 0.000 | 20 | random | 0.002 | 0.0 | 2.268 | 2.303 |
8 | Download | Download | predict | 10000 | 1 | 100 | 0.001 | 0.0 | 0.001 | 0.001 | 20 | random | 0.000 | 0.0 | 2.920 | 3.325 |
10 | Download | Download | predict | 10000 | 1000 | 100 | 0.003 | 0.0 | 0.277 | 0.000 | 20 | k-means++ | 0.002 | 0.0 | 1.251 | 1.254 |
11 | Download | Download | predict | 10000 | 1 | 100 | 0.000 | 0.0 | 0.003 | 0.000 | 20 | k-means++ | 0.001 | 0.0 | 0.518 | 0.546 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: penalty=l2
, dual=False
, tol=0.0001
, C=1.0
, fit_intercept=True
, intercept_scaling=1.0
, class_weight=nan
, random_state=nan
, solver=lbfgs
, max_iter=100
, multi_class=auto
, verbose=0
, warm_start=False
, n_jobs=nan
, l1_ratio=nan
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000000 | 1000000 | 100 | 22.550 | 0.034 | 0.035 | 0.000 | [20] | 1.964 | 0.008 | 11.481 | 11.481 |
3 | Download | Download | fit | 1000 | 1000 | 10000 | 0.967 | 0.256 | 0.083 | 0.001 | [27] | 0.910 | 0.069 | 1.062 | 1.065 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 1000000 | 1000 | 100 | 0.001 | 0.0 | 1.206 | 0.0 | [20] | 0.000 | 0.0 | 1.597 | 1.766 |
2 | Download | Download | predict | 1000000 | 1 | 100 | 0.000 | 0.0 | 0.004 | 0.0 | [20] | 0.000 | 0.0 | 0.786 | 0.905 |
4 | Download | Download | predict | 1000 | 100 | 10000 | 0.002 | 0.0 | 5.174 | 0.0 | [27] | 0.003 | 0.0 | 0.516 | 0.522 |
5 | Download | Download | predict | 1000 | 1 | 10000 | 0.000 | 0.0 | 0.833 | 0.0 | [27] | 0.001 | 0.0 | 0.126 | 0.130 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters:
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | copy_X | fit_intercept | normalize | positive | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000 | 1000 | 10000 | 1.370 | 0.015 | 0.058 | 0.001 | True | True | deprecated | False | 1.387 | 0.023 | 0.988 | 0.988 |
3 | Download | Download | fit | 1000000 | 1000000 | 100 | 8.924 | 0.039 | 0.090 | 0.000 | True | True | deprecated | False | 0.193 | 0.002 | 46.352 | 46.355 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | copy_X | fit_intercept | normalize | positive | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 1000 | 1000 | 10000 | 0.013 | 0.0 | 6.354 | 0.0 | True | True | deprecated | False | 0.019 | 0.0 | 0.673 | 0.673 |
2 | Download | Download | predict | 1000 | 10 | 10000 | 0.000 | 0.0 | 5.363 | 0.0 | True | True | deprecated | False | 0.000 | 0.0 | 0.454 | 0.493 |
4 | Download | Download | predict | 1000000 | 1000 | 100 | 0.000 | 0.0 | 5.466 | 0.0 | True | True | deprecated | False | 0.000 | 0.0 | 0.321 | 0.357 |
5 | Download | Download | predict | 1000000 | 10 | 100 | 0.000 | 0.0 | 0.116 | 0.0 | True | True | deprecated | False | 0.000 | 0.0 | 0.430 | 0.509 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: alpha=1e-06
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000 | 1000 | 10000 | 0.176 | 0.001 | 0.453 | 0.0 | 0.170 | 0.003 | 1.038 | 1.038 |
3 | Download | Download | fit | 1000000 | 1000000 | 100 | 1.236 | 0.012 | 0.647 | 0.0 | 0.223 | 0.002 | 5.545 | 5.545 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 1000 | 1000 | 10000 | 0.012 | 0.0 | 6.751 | 0.0 | 0.019 | 0.0 | 0.616 | 0.616 |
2 | Download | Download | predict | 1000 | 10 | 10000 | 0.000 | 0.0 | 4.427 | 0.0 | 0.000 | 0.0 | 0.516 | 0.560 |
4 | Download | Download | predict | 1000000 | 1000 | 100 | 0.000 | 0.0 | 4.485 | 0.0 | 0.000 | 0.0 | 0.541 | 0.596 |
5 | Download | Download | predict | 1000000 | 10 | 100 | 0.000 | 0.0 | 0.110 | 0.0 | 0.000 | 0.0 | 0.457 | 0.547 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters:
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | angle | early_exaggeration | init | learning_rate | method | metric | min_grad_norm | n_components | n_iter_without_progress | perplexity | square_distances | verbose | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000 | 1000 | 3 | 3.493 | 0.17 | 0.0 | 0.003 | 1000 | 0.5 | 12.0 | warn | warn | barnes_hut | euclidean | 0.0 | 2 | 300 | 30.0 | legacy | 0 | 3.484 | 0.213 | 1.003 | 1.005 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: n_components=10
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 100000 | 100000 | 100 | 0.472 | 0.004 | 0.169 | 0.0 | 0.026 | 0.001 | 18.117 | 18.122 |
1 | Download | Download | fit | 10000 | 10000 | 1000 | 0.433 | 0.017 | 0.185 | 0.0 | 0.181 | 0.001 | 2.390 | 2.390 |
Profiling traces can be visualized using Perfetto UI.
python | 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0] |
---|---|
executable | /usr/share/miniconda/envs/sklbench/bin/python |
machine | Linux-5.11.0-1028-azure-x86_64-with-glibc2.10 |
pip | 22.0.4 |
---|---|
setuptools | 60.10.0 |
sklearn | 1.0.2 |
numpy | 1.22.3 |
scipy | 1.8.0 |
Cython | None |
pandas | 1.4.1 |
matplotlib | 3.5.1 |
joblib | 1.1.0 |
threadpoolctl | 3.1.0 |
user_api | internal_api | prefix | filepath | version | threading_layer | architecture | num_threads | |
---|---|---|---|---|---|---|---|---|
0 | blas | openblas | libopenblas | /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so | 0.3.18 | pthreads | SkylakeX | 2 |
1 | openmp | openmp | libgomp | /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 | None | NaN | NaN | 2 |
cpu_count | 2 |
---|---|
physical_cpu_count | 2 |