In [1]:
from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_run_dir, default_report_config
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

scikit-learn-intelex (Intel® oneAPI) vs. scikit-learn

In [2]:
run_dir = default_run_dir()
report_config = default_report_config("scikit_learn_intelex_vs_scikit_learn")
In [3]:
# Parameters
report_config = {
    "parameters": {"n_cols": 2},
    "log_scale": True,
    "estimators": [
        {
            "title": "KNeighborsClassifier (brute force)",
            "name": "KNeighborsClassifier_brute_force",
            "split_bars_by_parameters": ["n_jobs"],
        },
        {
            "title": "KNeighborsClassifier (KD tree)",
            "name": "KNeighborsClassifier_kd_tree",
            "split_bars_by_parameters": ["n_jobs"],
        },
        {"title": "KMeans (tall)", "name": "KMeans_tall"},
        {"title": "KMeans (short)", "name": "KMeans_short"},
        {"title": "Logistic Regression", "name": "LogisticRegression"},
        {"title": "LinearRegression", "name": "LinearRegression"},
        {"title": "Ridge", "name": "Ridge"},
        {"title": "TSNE", "name": "TSNE"},
        {"title": "PCA", "name": "PCA"},
    ],
    "benchmarking_estimator_parameters": {
        "sklearn_KNeighborsClassifier_brute_force": [
            "n_neighbors",
            "algorithm",
            "n_jobs",
        ],
        "sklearnex_KNeighborsClassifier_brute_force": [],
        "sklearn_KNeighborsClassifier_kd_tree": ["n_neighbors", "algorithm", "n_jobs"],
        "sklearnex_KNeighborsClassifier_kd_tree": [],
        "sklearn_KMeans_tall": [
            "init",
            "algorithm",
            "n_clusters",
            "max_iter",
            "n_init",
            "tol",
        ],
        "sklearnex_KMeans_tall": [],
        "sklearn_KMeans_short": [
            "init",
            "algorithm",
            "n_clusters",
            "max_iter",
            "n_init",
            "tol",
        ],
        "sklearnex_KMeans_short": [],
        "sklearn_LogisticRegression": [
            "penalty",
            "dual",
            "tol",
            "C",
            "fit_intercept",
            "intercept_scaling",
            "class_weight",
            "random_state",
            "solver",
            "max_iter",
            "multi_class",
            "verbose",
            "warm_start",
            "n_jobs",
            "l1_ratio",
        ],
        "sklearnex_LogisticRegression": [],
        "sklearn_LinearRegression": [],
        "sklearnex_LinearRegression": [],
        "sklearn_Ridge": ["alpha"],
        "sklearnex_Ridge": [],
        "sklearn_TSNE": [],
        "sklearnex_TSNE": [],
        "sklearn_PCA": ["n_components"],
        "sklearnex_PCA": [],
        "sklearn_HistGradientBoostingClassifier_best": [
            "learning_rate",
            "n_iter_no_change",
            "max_leaf_nodes",
            "max_bins",
            "min_samples_leaf",
            "max_iter",
        ],
        "sklearn_HistGradientBoostingClassifier": [
            "learning_rate",
            "n_iter_no_change",
            "max_leaf_nodes",
            "max_bins",
            "min_samples_leaf",
            "max_iter",
            "early_stopping",
        ],
        "lightgbm": [
            "learning_rate",
            "num_leaves",
            "max_bin",
            "min_data_in_leaf",
            "bagging_fraction",
            "feature_fraction_bynode",
            "n_estimators",
        ],
        "xgboost": [
            "validate_parameters",
            "tree_method",
            "use_label_encoder",
            "learning_rate",
            "max_leaves",
            "max_bin",
            "min_child_weight",
            "subsample",
            "colsample_bynode",
            "n_estimators",
        ],
        "catboost_lossguide": [
            "allow_writing_files",
            "grow_policy",
            "bootstrap_type",
            "learning_rate",
            "max_leaves",
            "border_count",
            "min_data_in_leaf",
            "subsample",
            "rsm",
            "max_depth",
            "iterations",
        ],
        "catboost_symmetric": [
            "allow_writing_files",
            "grow_policy",
            "bootstrap_type",
            "learning_rate",
            "border_count",
            "min_data_in_leaf",
            "subsample",
            "rsm",
            "max_depth",
            "iterations",
        ],
    },
    "other_library": "sklearnex",
}
run_dir = "./results/local/20220322T182455/"
In [4]:
run_dir = Path(run_dir)
In [5]:
reporting = HpMatchReporting(**report_config, run_dir=run_dir)
reporting.make_report()

We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up time scikit-learn / time sklearnex. For instance, a speed-up of 2 means that sklearnex is twice as fast as scikit-learn for a given set of parameters and a given dataset.

KNeighborsClassifier (brute force)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=brute.

Raw results

fit

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
0 Download Download fit 100000 100000 100 1.159 0.021 0.069 0.0 -1 1 0.050 0.000 23.325 23.326
3 Download Download fit 100000 100000 100 1.102 0.013 0.073 0.0 -1 5 0.044 0.001 25.259 25.261
6 Download Download fit 100000 100000 100 1.149 0.026 0.070 0.0 1 100 0.044 0.001 25.848 25.850
9 Download Download fit 100000 100000 100 1.153 0.016 0.069 0.0 -1 100 0.050 0.000 23.278 23.278
12 Download Download fit 100000 100000 100 1.102 0.011 0.073 0.0 1 5 0.049 0.000 22.297 22.297
15 Download Download fit 100000 100000 100 1.110 0.019 0.072 0.0 1 1 0.047 0.003 23.822 23.859
18 Download Download fit 100000 100000 2 0.044 0.001 0.036 0.0 -1 1 0.008 0.000 5.280 5.281
21 Download Download fit 100000 100000 2 0.044 0.001 0.036 0.0 -1 5 0.008 0.000 5.260 5.261
24 Download Download fit 100000 100000 2 0.044 0.001 0.036 0.0 1 100 0.008 0.000 5.269 5.270
27 Download Download fit 100000 100000 2 0.044 0.001 0.037 0.0 -1 100 0.008 0.000 5.209 5.210
30 Download Download fit 100000 100000 2 0.043 0.001 0.037 0.0 1 5 0.008 0.000 5.188 5.189
33 Download Download fit 100000 100000 2 0.043 0.001 0.037 0.0 1 1 0.008 0.000 5.164 5.164

predict

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
1 Download Download predict 100000 1000 100 2.243 0.096 0.000 0.002 -1 1 0.166 0.000 13.535 13.535
2 Download Download predict 100000 1 100 0.021 0.003 0.000 0.021 -1 1 0.008 0.000 2.647 2.648
4 Download Download predict 100000 1000 100 2.754 0.072 0.000 0.003 -1 5 0.167 0.000 16.490 16.490
5 Download Download predict 100000 1 100 0.021 0.001 0.000 0.021 -1 5 0.008 0.000 2.715 2.716
7 Download Download predict 100000 1000 100 1.859 0.003 0.000 0.002 1 100 0.205 0.001 9.083 9.083
8 Download Download predict 100000 1 100 0.018 0.000 0.000 0.018 1 100 0.008 0.000 2.299 2.300
10 Download Download predict 100000 1000 100 2.561 0.029 0.000 0.003 -1 100 0.205 0.001 12.503 12.503
11 Download Download predict 100000 1 100 0.023 0.003 0.000 0.023 -1 100 0.008 0.000 2.848 2.849
13 Download Download predict 100000 1000 100 1.862 0.033 0.000 0.002 1 5 0.167 0.001 11.127 11.127
14 Download Download predict 100000 1 100 0.018 0.000 0.000 0.018 1 5 0.008 0.000 2.263 2.263
16 Download Download predict 100000 1000 100 1.143 0.006 0.001 0.001 1 1 0.166 0.000 6.894 6.894
17 Download Download predict 100000 1 100 0.017 0.000 0.000 0.017 1 1 0.008 0.000 2.218 2.218
19 Download Download predict 100000 1000 2 1.682 0.020 0.000 0.002 -1 1 0.026 0.001 65.129 65.169
20 Download Download predict 100000 1 2 0.004 0.002 0.000 0.004 -1 1 0.001 0.000 4.817 4.985
22 Download Download predict 100000 1000 2 2.435 0.025 0.000 0.002 -1 5 0.027 0.000 91.643 91.644
23 Download Download predict 100000 1 2 0.006 0.003 0.000 0.006 -1 5 0.001 0.000 7.412 7.442
25 Download Download predict 100000 1000 2 1.804 0.002 0.000 0.002 1 100 0.060 0.000 30.184 30.184
26 Download Download predict 100000 1 2 0.003 0.000 0.000 0.003 1 100 0.001 0.000 3.171 3.193
28 Download Download predict 100000 1000 2 2.475 0.020 0.000 0.002 -1 100 0.060 0.000 41.410 41.410
29 Download Download predict 100000 1 2 0.005 0.002 0.000 0.005 -1 100 0.001 0.000 6.594 6.611
31 Download Download predict 100000 1000 2 1.800 0.005 0.000 0.002 1 5 0.027 0.000 67.629 67.629
32 Download Download predict 100000 1 2 0.003 0.000 0.000 0.003 1 5 0.001 0.000 3.452 3.477
34 Download Download predict 100000 1000 2 1.042 0.007 0.000 0.001 1 1 0.026 0.000 40.842 40.843
35 Download Download predict 100000 1 2 0.002 0.000 0.000 0.002 1 1 0.001 0.000 2.321 2.325

Profiling traces can be visualized using Perfetto UI.

KNeighborsClassifier (KD tree)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=kd_tree.

Raw results

fit

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
0 Download Download fit 1000000 1000000 10 2.573 0.011 0.031 0.0 -1 1 0.659 0.003 3.904 3.904
3 Download Download fit 1000000 1000000 10 2.561 0.016 0.031 0.0 -1 5 0.669 0.014 3.829 3.830
6 Download Download fit 1000000 1000000 10 2.569 0.007 0.031 0.0 1 100 0.662 0.005 3.882 3.882
9 Download Download fit 1000000 1000000 10 2.588 0.020 0.031 0.0 -1 100 0.668 0.009 3.873 3.873
12 Download Download fit 1000000 1000000 10 2.576 0.016 0.031 0.0 1 5 0.677 0.016 3.807 3.808
15 Download Download fit 1000000 1000000 10 2.561 0.012 0.031 0.0 1 1 0.672 0.012 3.813 3.814
18 Download Download fit 1000 1000 2 0.001 0.000 0.030 0.0 -1 1 0.001 0.000 0.569 0.574
21 Download Download fit 1000 1000 2 0.001 0.000 0.031 0.0 -1 5 0.001 0.000 0.578 0.583
24 Download Download fit 1000 1000 2 0.001 0.000 0.031 0.0 1 100 0.001 0.000 0.568 0.573
27 Download Download fit 1000 1000 2 0.001 0.000 0.031 0.0 -1 100 0.001 0.000 0.583 0.585
30 Download Download fit 1000 1000 2 0.001 0.000 0.030 0.0 1 5 0.001 0.000 0.579 0.584
33 Download Download fit 1000 1000 2 0.001 0.000 0.031 0.0 1 1 0.001 0.000 0.578 0.583

predict

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_jobs n_neighbors mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
1 Download Download predict 1000000 1000 10 0.378 0.008 0.000 0.000 -1 1 0.090 0.001 4.185 4.185
2 Download Download predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 1 0.000 0.000 9.663 10.326
4 Download Download predict 1000000 1000 10 0.686 0.009 0.000 0.001 -1 5 0.165 0.003 4.150 4.151
5 Download Download predict 1000000 1 10 0.003 0.000 0.000 0.003 -1 5 0.000 0.000 8.988 9.526
7 Download Download predict 1000000 1000 10 4.093 0.012 0.000 0.004 1 100 0.484 0.003 8.457 8.457
8 Download Download predict 1000000 1 10 0.002 0.001 0.000 0.002 1 100 0.001 0.000 4.227 4.424
10 Download Download predict 1000000 1000 10 2.438 0.009 0.000 0.002 -1 100 0.493 0.004 4.950 4.950
11 Download Download predict 1000000 1 10 0.004 0.001 0.000 0.004 -1 100 0.001 0.000 7.220 7.634
13 Download Download predict 1000000 1000 10 1.237 0.007 0.000 0.001 1 5 0.164 0.001 7.546 7.546
14 Download Download predict 1000000 1 10 0.001 0.000 0.000 0.001 1 5 0.000 0.000 3.750 4.009
16 Download Download predict 1000000 1000 10 0.661 0.006 0.000 0.001 1 1 0.092 0.001 7.217 7.217
17 Download Download predict 1000000 1 10 0.001 0.000 0.000 0.001 1 1 0.000 0.000 3.666 3.902
19 Download Download predict 1000 1000 2 0.022 0.000 0.001 0.000 -1 1 0.001 0.000 42.753 42.944
20 Download Download predict 1000 1 2 0.002 0.000 0.000 0.002 -1 1 0.000 0.000 17.202 17.864
22 Download Download predict 1000 1000 2 0.023 0.000 0.001 0.000 -1 5 0.001 0.000 31.008 31.390
23 Download Download predict 1000 1 2 0.002 0.000 0.000 0.002 -1 5 0.000 0.000 17.071 17.908
25 Download Download predict 1000 1000 2 0.037 0.011 0.000 0.000 1 100 0.005 0.000 8.039 8.056
26 Download Download predict 1000 1 2 0.001 0.000 0.000 0.001 1 100 0.000 0.000 3.854 4.367
28 Download Download predict 1000 1000 2 0.034 0.000 0.000 0.000 -1 100 0.005 0.000 7.391 7.401
29 Download Download predict 1000 1 2 0.002 0.000 0.000 0.002 -1 100 0.000 0.000 15.388 16.688
31 Download Download predict 1000 1000 2 0.021 0.000 0.001 0.000 1 5 0.001 0.000 25.476 25.732
32 Download Download predict 1000 1 2 0.001 0.000 0.000 0.001 1 5 0.000 0.000 4.338 4.582
34 Download Download predict 1000 1000 2 0.019 0.000 0.001 0.000 1 1 0.001 0.000 37.930 38.228
35 Download Download predict 1000 1 2 0.001 0.000 0.000 0.001 1 1 0.000 0.000 4.301 4.561

Profiling traces can be visualized using Perfetto UI.

KMeans (tall)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=full, n_clusters=3, max_iter=30, n_init=1, tol=1e-16.

Raw results

fit

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
0 Download Download fit 1000000 1000000 2 0.473 0.002 0.034 0.0 30 random 0.350 0.017 1.350 1.352
3 Download Download fit 1000000 1000000 2 0.528 0.007 0.030 0.0 30 k-means++ 0.391 0.012 1.351 1.351
6 Download Download fit 1000000 1000000 100 4.495 0.262 0.178 0.0 30 random 2.431 0.020 1.849 1.850
9 Download Download fit 1000000 1000000 100 4.595 0.034 0.174 0.0 30 k-means++ 2.627 0.006 1.749 1.749

predict

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
1 Download Download predict 1000000 1000 2 0.0 0.0 0.073 0.0 30 random 0.0 0.0 1.127 1.189
2 Download Download predict 1000000 1 2 0.0 0.0 0.000 0.0 30 random 0.0 0.0 1.317 1.375
4 Download Download predict 1000000 1000 2 0.0 0.0 0.072 0.0 30 k-means++ 0.0 0.0 1.102 1.175
5 Download Download predict 1000000 1 2 0.0 0.0 0.000 0.0 30 k-means++ 0.0 0.0 1.151 1.286
7 Download Download predict 1000000 1000 100 0.0 0.0 1.936 0.0 30 random 0.0 0.0 1.338 1.402
8 Download Download predict 1000000 1 100 0.0 0.0 0.004 0.0 30 random 0.0 0.0 1.258 1.341
10 Download Download predict 1000000 1000 100 0.0 0.0 1.982 0.0 30 k-means++ 0.0 0.0 1.365 1.433
11 Download Download predict 1000000 1 100 0.0 0.0 0.004 0.0 30 k-means++ 0.0 0.0 1.278 1.334

Profiling traces can be visualized using Perfetto UI.

KMeans (short)

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: algorithm=full, n_clusters=300, max_iter=20, n_init=1, tol=1e-16.

Mismatches between validation scores

WARNING! Mismatch between validation scores for 2 predictions (25.0%).
The observed differences can be found in the diff_adjusted_rand_scores column.
The chosen difference threshold is 0.01 for adjusted_rand_score.
The biggest difference is 0.077 for adjusted_rand_score.
See details in the dataframe below.
estimator library diff_adjusted_rand_scores function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter algorithm init max_iter n_clusters n_init tol adjusted_rand_score_sklearn mean_duration_sklearnex std_duration_sklearnex adjusted_rand_score_sklearnex speedup std_speedup
7 sklearn_KMeans_short sklearn 0.074768 predict 10000 1000 100 0.001315 0.000210 0.608421 0.000001 20 full random 20 300 1 1.000000e-16 0.222701 0.001131 0.000108 0.297469 1.162543 1.167836
10 sklearn_KMeans_short sklearn 0.076616 predict 10000 1000 100 0.001232 0.000114 0.649283 0.000001 20 full k-means++ 20 300 1 1.000000e-16 0.408030 0.001115 0.000098 0.331414 1.104843 1.109090

Raw results

fit

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
0 Download Download fit 10000 10000 2 0.077 0.000 0.002 0.0 20 random 0.031 0.000 2.495 2.495
3 Download Download fit 10000 10000 2 0.193 0.001 0.001 0.0 20 k-means++ 0.086 0.002 2.248 2.249
6 Download Download fit 10000 10000 100 0.193 0.010 0.042 0.0 20 random 0.125 0.002 1.536 1.536
9 Download Download fit 10000 10000 100 0.537 0.006 0.015 0.0 20 k-means++ 0.308 0.001 1.741 1.741

predict

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter init mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
1 Download Download predict 10000 1000 2 0.001 0.0 0.024 0.0 20 random 0.001 0.0 1.070 1.071
2 Download Download predict 10000 1 2 0.000 0.0 0.000 0.0 20 random 0.000 0.0 1.191 1.255
4 Download Download predict 10000 1000 2 0.001 0.0 0.025 0.0 20 k-means++ 0.001 0.0 1.040 1.043
5 Download Download predict 10000 1 2 0.000 0.0 0.000 0.0 20 k-means++ 0.000 0.0 1.339 1.392
7 Download Download predict 10000 1000 100 0.001 0.0 0.608 0.0 20 random 0.001 0.0 1.163 1.168
8 Download Download predict 10000 1 100 0.000 0.0 0.003 0.0 20 random 0.000 0.0 1.264 1.303
10 Download Download predict 10000 1000 100 0.001 0.0 0.649 0.0 20 k-means++ 0.001 0.0 1.105 1.109
11 Download Download predict 10000 1 100 0.000 0.0 0.003 0.0 20 k-means++ 0.000 0.0 1.407 1.450

Profiling traces can be visualized using Perfetto UI.

Logistic Regression

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: penalty=l2, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1.0, class_weight=nan, random_state=nan, solver=lbfgs, max_iter=100, multi_class=auto, verbose=0, warm_start=False, n_jobs=nan, l1_ratio=nan.

Raw results

fit

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
0 Download Download fit 1000000 1000000 100 9.720 0.021 0.082 0.000 [20] 1.677 0.004 5.797 5.797
3 Download Download fit 1000 1000 10000 0.701 0.042 0.114 0.001 [27] 0.676 0.056 1.037 1.040

predict

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
1 Download Download predict 1000000 1000 100 0.000 0.0 3.051 0.0 [20] 0.000 0.0 0.710 0.737
2 Download Download predict 1000000 1 100 0.000 0.0 0.014 0.0 [20] 0.000 0.0 0.260 0.284
4 Download Download predict 1000 100 10000 0.002 0.0 5.204 0.0 [27] 0.003 0.0 0.543 0.547
5 Download Download predict 1000 1 10000 0.000 0.0 0.989 0.0 [27] 0.001 0.0 0.111 0.115

Profiling traces can be visualized using Perfetto UI.

LinearRegression

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters:

Raw results

fit

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
0 Download Download fit 1000 1000 10000 1.230 0.011 0.065 0.001 True True deprecated False 1.305 0.013 0.943 0.943
3 Download Download fit 1000000 1000000 100 7.166 0.110 0.112 0.000 True True deprecated False 0.177 0.000 40.421 40.421

predict

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency copy_X fit_intercept normalize positive mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
1 Download Download predict 1000 1000 10000 0.01 0.0 8.254 0.0 True True deprecated False 0.016 0.0 0.589 0.589
2 Download Download predict 1000 10 10000 0.00 0.0 6.442 0.0 True True deprecated False 0.000 0.0 0.431 0.450
4 Download Download predict 1000000 1000 100 0.00 0.0 5.713 0.0 True True deprecated False 0.000 0.0 0.358 0.368
5 Download Download predict 1000000 10 100 0.00 0.0 0.145 0.0 True True deprecated False 0.000 0.0 0.377 0.394

Profiling traces can be visualized using Perfetto UI.

Ridge

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: alpha=1e-06.

Raw results

fit

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
0 Download Download fit 1000 1000 10000 0.159 0.000 0.505 0.0 0.167 0.001 0.951 0.951
3 Download Download fit 1000000 1000000 100 0.992 0.004 0.806 0.0 0.210 0.001 4.736 4.736

predict

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
1 Download Download predict 1000 1000 10000 0.01 0.0 8.283 0.0 0.016 0.0 0.590 0.590
2 Download Download predict 1000 10 10000 0.00 0.0 6.528 0.0 0.000 0.0 0.437 0.454
4 Download Download predict 1000000 1000 100 0.00 0.0 6.029 0.0 0.000 0.0 0.477 0.495
5 Download Download predict 1000000 10 100 0.00 0.0 0.151 0.0 0.000 0.0 0.370 0.381

Profiling traces can be visualized using Perfetto UI.

TSNE

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters:

Raw results

fit

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency n_iter angle early_exaggeration init learning_rate method metric min_grad_norm n_components n_iter_without_progress perplexity square_distances verbose mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
0 Download Download fit 1000 1000 3 3.439 0.167 0.0 0.003 1000 0.5 12.0 warn warn barnes_hut euclidean 0.0 2 300 30.0 legacy 0 3.514 0.23 0.979 0.981

Profiling traces can be visualized using Perfetto UI.

PCA

scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)

Speedup barplots

All estimators share the following parameters: n_components=10.

Raw results

fit

sklearn_profiling sklearnex_profiling function n_samples_train n_samples n_features mean_duration_sklearn std_duration_sklearn iteration_throughput latency mean_duration_sklearnex std_duration_sklearnex speedup std_speedup
0 Download Download fit 100000 100000 100 0.411 0.001 0.195 0.0 0.025 0.000 16.729 16.730
1 Download Download fit 10000 10000 1000 0.360 0.002 0.222 0.0 0.176 0.001 2.042 2.042

Profiling traces can be visualized using Perfetto UI.

Benchmark environment information

System

python 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0]
executable /usr/share/miniconda/envs/sklbench/bin/python
machine Linux-5.11.0-1028-azure-x86_64-with-glibc2.10

Dependencies

pip 22.0.4
setuptools 60.10.0
sklearn 1.0.2
numpy 1.22.3
scipy 1.8.0
Cython None
pandas 1.4.1
matplotlib 3.5.1
joblib 1.1.0
threadpoolctl 3.1.0

Threadpool

user_api internal_api prefix filepath version threading_layer architecture num_threads
0 blas openblas libopenblas /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so 0.3.18 pthreads SkylakeX 2
1 openmp openmp libgomp /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 None NaN NaN 2

Cpu_count

cpu_count 2
physical_cpu_count 2