from sklearn_benchmarks.reporting.hp_match import HpMatchReporting
from sklearn_benchmarks.utils import default_run_dir, default_report_config
from pathlib import Path
import pandas as pd
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
run_dir = Path(run_dir)
reporting = HpMatchReporting(**report_config, run_dir=run_dir)
reporting.make_report()
We assume here there is a perfect match between the hyperparameters of both librairies. For a given set of parameters and a given dataset, we compute the speed-up
time scikit-learn / time sklearnex
. For instance, a speed-up of 2 means that sklearnex is twice as fast as scikit-learn for a given set of parameters and a given dataset.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=brute
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 100000 | 100000 | 100 | 1.443 | 0.055 | 0.055 | 0.0 | -1 | 1 | 0.055 | 0.001 | 26.323 | 26.325 |
3 | Download | Download | fit | 100000 | 100000 | 100 | 1.342 | 0.021 | 0.060 | 0.0 | -1 | 5 | 0.050 | 0.000 | 26.853 | 26.853 |
6 | Download | Download | fit | 100000 | 100000 | 100 | 1.342 | 0.031 | 0.060 | 0.0 | 1 | 100 | 0.050 | 0.000 | 26.813 | 26.813 |
9 | Download | Download | fit | 100000 | 100000 | 100 | 1.336 | 0.018 | 0.060 | 0.0 | -1 | 100 | 0.055 | 0.000 | 24.426 | 24.426 |
12 | Download | Download | fit | 100000 | 100000 | 100 | 1.329 | 0.016 | 0.060 | 0.0 | 1 | 5 | 0.055 | 0.000 | 24.221 | 24.222 |
15 | Download | Download | fit | 100000 | 100000 | 100 | 1.326 | 0.012 | 0.060 | 0.0 | 1 | 1 | 0.052 | 0.002 | 25.288 | 25.312 |
18 | Download | Download | fit | 100000 | 100000 | 2 | 0.054 | 0.001 | 0.029 | 0.0 | -1 | 1 | 0.010 | 0.000 | 5.350 | 5.351 |
21 | Download | Download | fit | 100000 | 100000 | 2 | 0.052 | 0.001 | 0.031 | 0.0 | -1 | 5 | 0.010 | 0.000 | 5.308 | 5.310 |
24 | Download | Download | fit | 100000 | 100000 | 2 | 0.051 | 0.001 | 0.031 | 0.0 | 1 | 100 | 0.010 | 0.000 | 5.187 | 5.190 |
27 | Download | Download | fit | 100000 | 100000 | 2 | 0.052 | 0.001 | 0.031 | 0.0 | -1 | 100 | 0.010 | 0.000 | 5.086 | 5.088 |
30 | Download | Download | fit | 100000 | 100000 | 2 | 0.052 | 0.001 | 0.031 | 0.0 | 1 | 5 | 0.010 | 0.000 | 5.138 | 5.140 |
33 | Download | Download | fit | 100000 | 100000 | 2 | 0.055 | 0.002 | 0.029 | 0.0 | 1 | 1 | 0.010 | 0.000 | 5.487 | 5.489 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 100000 | 1000 | 100 | 2.520 | 0.077 | 0.000 | 0.003 | -1 | 1 | 0.204 | 0.002 | 12.374 | 12.375 |
2 | Download | Download | predict | 100000 | 1 | 100 | 0.024 | 0.002 | 0.000 | 0.024 | -1 | 1 | 0.009 | 0.000 | 2.763 | 2.765 |
4 | Download | Download | predict | 100000 | 1000 | 100 | 3.078 | 0.050 | 0.000 | 0.003 | -1 | 5 | 0.205 | 0.003 | 15.021 | 15.022 |
5 | Download | Download | predict | 100000 | 1 | 100 | 0.024 | 0.002 | 0.000 | 0.024 | -1 | 5 | 0.008 | 0.000 | 2.837 | 2.839 |
7 | Download | Download | predict | 100000 | 1000 | 100 | 2.165 | 0.007 | 0.000 | 0.002 | 1 | 100 | 0.249 | 0.003 | 8.703 | 8.703 |
8 | Download | Download | predict | 100000 | 1 | 100 | 0.021 | 0.000 | 0.000 | 0.021 | 1 | 100 | 0.009 | 0.000 | 2.360 | 2.361 |
10 | Download | Download | predict | 100000 | 1000 | 100 | 2.989 | 0.048 | 0.000 | 0.003 | -1 | 100 | 0.250 | 0.001 | 11.981 | 11.982 |
11 | Download | Download | predict | 100000 | 1 | 100 | 0.024 | 0.001 | 0.000 | 0.024 | -1 | 100 | 0.009 | 0.000 | 2.649 | 2.649 |
13 | Download | Download | predict | 100000 | 1000 | 100 | 2.142 | 0.006 | 0.000 | 0.002 | 1 | 5 | 0.205 | 0.002 | 10.432 | 10.433 |
14 | Download | Download | predict | 100000 | 1 | 100 | 0.021 | 0.000 | 0.000 | 0.021 | 1 | 5 | 0.009 | 0.000 | 2.421 | 2.423 |
16 | Download | Download | predict | 100000 | 1000 | 100 | 1.329 | 0.005 | 0.001 | 0.001 | 1 | 1 | 0.212 | 0.006 | 6.283 | 6.285 |
17 | Download | Download | predict | 100000 | 1 | 100 | 0.020 | 0.001 | 0.000 | 0.020 | 1 | 1 | 0.009 | 0.000 | 2.305 | 2.306 |
19 | Download | Download | predict | 100000 | 1000 | 2 | 1.872 | 0.041 | 0.000 | 0.002 | -1 | 1 | 0.032 | 0.000 | 59.353 | 59.359 |
20 | Download | Download | predict | 100000 | 1 | 2 | 0.006 | 0.004 | 0.000 | 0.006 | -1 | 1 | 0.001 | 0.000 | 6.242 | 6.296 |
22 | Download | Download | predict | 100000 | 1000 | 2 | 2.758 | 0.043 | 0.000 | 0.003 | -1 | 5 | 0.033 | 0.000 | 83.904 | 83.907 |
23 | Download | Download | predict | 100000 | 1 | 2 | 0.007 | 0.002 | 0.000 | 0.007 | -1 | 5 | 0.001 | 0.000 | 6.699 | 6.827 |
25 | Download | Download | predict | 100000 | 1000 | 2 | 2.083 | 0.019 | 0.000 | 0.002 | 1 | 100 | 0.075 | 0.001 | 27.728 | 27.732 |
26 | Download | Download | predict | 100000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | 1 | 100 | 0.001 | 0.000 | 2.935 | 2.982 |
28 | Download | Download | predict | 100000 | 1000 | 2 | 2.840 | 0.035 | 0.000 | 0.003 | -1 | 100 | 0.073 | 0.001 | 38.726 | 38.728 |
29 | Download | Download | predict | 100000 | 1 | 2 | 0.008 | 0.003 | 0.000 | 0.008 | -1 | 100 | 0.001 | 0.000 | 7.774 | 7.882 |
31 | Download | Download | predict | 100000 | 1000 | 2 | 2.096 | 0.005 | 0.000 | 0.002 | 1 | 5 | 0.033 | 0.000 | 63.393 | 63.398 |
32 | Download | Download | predict | 100000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | 1 | 5 | 0.001 | 0.000 | 3.208 | 3.248 |
34 | Download | Download | predict | 100000 | 1000 | 2 | 1.204 | 0.012 | 0.000 | 0.001 | 1 | 1 | 0.032 | 0.001 | 38.092 | 38.100 |
35 | Download | Download | predict | 100000 | 1 | 2 | 0.002 | 0.000 | 0.000 | 0.002 | 1 | 1 | 0.001 | 0.000 | 2.124 | 2.155 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=kd_tree
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000000 | 1000000 | 10 | 3.204 | 0.026 | 0.025 | 0.0 | -1 | 1 | 0.782 | 0.015 | 4.094 | 4.095 |
3 | Download | Download | fit | 1000000 | 1000000 | 10 | 3.279 | 0.034 | 0.024 | 0.0 | -1 | 5 | 0.781 | 0.004 | 4.199 | 4.199 |
6 | Download | Download | fit | 1000000 | 1000000 | 10 | 3.251 | 0.063 | 0.025 | 0.0 | 1 | 100 | 0.747 | 0.015 | 4.351 | 4.351 |
9 | Download | Download | fit | 1000000 | 1000000 | 10 | 3.255 | 0.040 | 0.025 | 0.0 | -1 | 100 | 0.773 | 0.009 | 4.209 | 4.209 |
12 | Download | Download | fit | 1000000 | 1000000 | 10 | 3.300 | 0.056 | 0.024 | 0.0 | 1 | 5 | 0.746 | 0.016 | 4.422 | 4.423 |
15 | Download | Download | fit | 1000000 | 1000000 | 10 | 3.123 | 0.059 | 0.026 | 0.0 | 1 | 1 | 0.762 | 0.013 | 4.096 | 4.097 |
18 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.025 | 0.0 | -1 | 1 | 0.001 | 0.000 | 0.589 | 0.594 |
21 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.021 | 0.0 | -1 | 5 | 0.001 | 0.000 | 0.651 | 0.657 |
24 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.026 | 0.0 | 1 | 100 | 0.001 | 0.000 | 0.585 | 0.592 |
27 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.026 | 0.0 | -1 | 100 | 0.001 | 0.000 | 0.569 | 0.573 |
30 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.025 | 0.0 | 1 | 5 | 0.001 | 0.000 | 0.575 | 0.582 |
33 | Download | Download | fit | 1000 | 1000 | 2 | 0.001 | 0.000 | 0.025 | 0.0 | 1 | 1 | 0.001 | 0.000 | 0.553 | 0.556 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_jobs | n_neighbors | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 1000000 | 1000 | 10 | 0.430 | 0.006 | 0.000 | 0.000 | -1 | 1 | 0.105 | 0.002 | 4.108 | 4.109 |
2 | Download | Download | predict | 1000000 | 1 | 10 | 0.003 | 0.000 | 0.000 | 0.003 | -1 | 1 | 0.000 | 0.000 | 9.144 | 9.792 |
4 | Download | Download | predict | 1000000 | 1000 | 10 | 0.835 | 0.011 | 0.000 | 0.001 | -1 | 5 | 0.186 | 0.003 | 4.480 | 4.480 |
5 | Download | Download | predict | 1000000 | 1 | 10 | 0.004 | 0.001 | 0.000 | 0.004 | -1 | 5 | 0.000 | 0.000 | 9.881 | 10.562 |
7 | Download | Download | predict | 1000000 | 1000 | 10 | 4.828 | 0.022 | 0.000 | 0.005 | 1 | 100 | 0.550 | 0.007 | 8.780 | 8.781 |
8 | Download | Download | predict | 1000000 | 1 | 10 | 0.003 | 0.001 | 0.000 | 0.003 | 1 | 100 | 0.001 | 0.000 | 4.297 | 4.537 |
10 | Download | Download | predict | 1000000 | 1000 | 10 | 2.702 | 0.038 | 0.000 | 0.003 | -1 | 100 | 0.551 | 0.007 | 4.905 | 4.906 |
11 | Download | Download | predict | 1000000 | 1 | 10 | 0.005 | 0.001 | 0.000 | 0.005 | -1 | 100 | 0.001 | 0.000 | 7.976 | 8.343 |
13 | Download | Download | predict | 1000000 | 1000 | 10 | 1.441 | 0.025 | 0.000 | 0.001 | 1 | 5 | 0.184 | 0.002 | 7.843 | 7.843 |
14 | Download | Download | predict | 1000000 | 1 | 10 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 5 | 0.000 | 0.000 | 3.909 | 4.116 |
16 | Download | Download | predict | 1000000 | 1000 | 10 | 0.762 | 0.007 | 0.000 | 0.001 | 1 | 1 | 0.106 | 0.003 | 7.172 | 7.174 |
17 | Download | Download | predict | 1000000 | 1 | 10 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 1 | 0.000 | 0.000 | 3.545 | 3.736 |
19 | Download | Download | predict | 1000 | 1000 | 2 | 0.025 | 0.001 | 0.001 | 0.000 | -1 | 1 | 0.001 | 0.000 | 38.140 | 39.430 |
20 | Download | Download | predict | 1000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | -1 | 1 | 0.000 | 0.000 | 15.106 | 17.331 |
22 | Download | Download | predict | 1000 | 1000 | 2 | 0.027 | 0.001 | 0.001 | 0.000 | -1 | 5 | 0.001 | 0.000 | 26.468 | 26.854 |
23 | Download | Download | predict | 1000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | -1 | 5 | 0.000 | 0.000 | 14.971 | 17.144 |
25 | Download | Download | predict | 1000 | 1000 | 2 | 0.038 | 0.001 | 0.000 | 0.000 | 1 | 100 | 0.006 | 0.000 | 6.813 | 6.837 |
26 | Download | Download | predict | 1000 | 1 | 2 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 100 | 0.000 | 0.000 | 3.881 | 4.447 |
28 | Download | Download | predict | 1000 | 1000 | 2 | 0.040 | 0.001 | 0.000 | 0.000 | -1 | 100 | 0.006 | 0.000 | 7.144 | 7.165 |
29 | Download | Download | predict | 1000 | 1 | 2 | 0.003 | 0.000 | 0.000 | 0.003 | -1 | 100 | 0.000 | 0.000 | 13.643 | 15.486 |
31 | Download | Download | predict | 1000 | 1000 | 2 | 0.024 | 0.000 | 0.001 | 0.000 | 1 | 5 | 0.001 | 0.000 | 23.940 | 24.373 |
32 | Download | Download | predict | 1000 | 1 | 2 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 5 | 0.000 | 0.000 | 3.807 | 4.510 |
34 | Download | Download | predict | 1000 | 1000 | 2 | 0.021 | 0.001 | 0.001 | 0.000 | 1 | 1 | 0.001 | 0.000 | 33.275 | 34.652 |
35 | Download | Download | predict | 1000 | 1 | 2 | 0.001 | 0.000 | 0.000 | 0.001 | 1 | 1 | 0.000 | 0.000 | 3.751 | 4.354 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=full
, n_clusters=3
, max_iter=30
, n_init=1
, tol=1e-16
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000000 | 1000000 | 2 | 0.575 | 0.012 | 0.028 | 0.0 | 30 | random | 0.447 | 0.035 | 1.286 | 1.290 |
3 | Download | Download | fit | 1000000 | 1000000 | 2 | 0.627 | 0.009 | 0.026 | 0.0 | 30 | k-means++ | 0.506 | 0.035 | 1.240 | 1.242 |
6 | Download | Download | fit | 1000000 | 1000000 | 100 | 5.281 | 0.210 | 0.151 | 0.0 | 30 | random | 2.910 | 0.047 | 1.815 | 1.815 |
9 | Download | Download | fit | 1000000 | 1000000 | 100 | 5.264 | 0.030 | 0.152 | 0.0 | 30 | k-means++ | 3.026 | 0.020 | 1.739 | 1.739 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 1000000 | 1000 | 2 | 0.000 | 0.0 | 0.059 | 0.0 | 30 | random | 0.0 | 0.0 | 1.023 | 1.114 |
2 | Download | Download | predict | 1000000 | 1 | 2 | 0.000 | 0.0 | 0.000 | 0.0 | 30 | random | 0.0 | 0.0 | 1.206 | 1.361 |
4 | Download | Download | predict | 1000000 | 1000 | 2 | 0.000 | 0.0 | 0.059 | 0.0 | 30 | k-means++ | 0.0 | 0.0 | 1.094 | 1.195 |
5 | Download | Download | predict | 1000000 | 1 | 2 | 0.000 | 0.0 | 0.000 | 0.0 | 30 | k-means++ | 0.0 | 0.0 | 0.989 | 1.097 |
7 | Download | Download | predict | 1000000 | 1000 | 100 | 0.001 | 0.0 | 1.536 | 0.0 | 30 | random | 0.0 | 0.0 | 1.379 | 1.482 |
8 | Download | Download | predict | 1000000 | 1 | 100 | 0.000 | 0.0 | 0.003 | 0.0 | 30 | random | 0.0 | 0.0 | 1.049 | 1.161 |
10 | Download | Download | predict | 1000000 | 1000 | 100 | 0.001 | 0.0 | 1.538 | 0.0 | 30 | k-means++ | 0.0 | 0.0 | 1.349 | 1.466 |
11 | Download | Download | predict | 1000000 | 1 | 100 | 0.000 | 0.0 | 0.003 | 0.0 | 30 | k-means++ | 0.0 | 0.0 | 1.255 | 1.449 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: algorithm=full
, n_clusters=300
, max_iter=20
, n_init=1
, tol=1e-16
.
estimator | library | diff_adjusted_rand_scores | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | algorithm | init | max_iter | n_clusters | n_init | tol | adjusted_rand_score_sklearn | mean_duration_sklearnex | std_duration_sklearnex | adjusted_rand_score_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | sklearn_KMeans_short | sklearn | 0.074768 | predict | 10000 | 1000 | 100 | 0.001641 | 0.000254 | 0.487498 | 0.000002 | 20 | full | random | 20 | 300 | 1 | 1.000000e-16 | 0.222701 | 0.001371 | 0.000145 | 0.297469 | 1.196983 | 1.203640 |
10 | sklearn_KMeans_short | sklearn | 0.076616 | predict | 10000 | 1000 | 100 | 0.001637 | 0.000165 | 0.488827 | 0.000002 | 20 | full | k-means++ | 20 | 300 | 1 | 1.000000e-16 | 0.408030 | 0.001349 | 0.000154 | 0.331414 | 1.213622 | 1.221513 |
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 10000 | 10000 | 2 | 0.094 | 0.001 | 0.002 | 0.0 | 20 | random | 0.038 | 0.001 | 2.505 | 2.505 |
3 | Download | Download | fit | 10000 | 10000 | 2 | 0.235 | 0.002 | 0.001 | 0.0 | 20 | k-means++ | 0.102 | 0.001 | 2.303 | 2.303 |
6 | Download | Download | fit | 10000 | 10000 | 100 | 0.231 | 0.002 | 0.035 | 0.0 | 20 | random | 0.151 | 0.003 | 1.531 | 1.531 |
9 | Download | Download | fit | 10000 | 10000 | 100 | 0.647 | 0.007 | 0.012 | 0.0 | 20 | k-means++ | 0.386 | 0.003 | 1.678 | 1.678 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | init | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 10000 | 1000 | 2 | 0.001 | 0.0 | 0.021 | 0.0 | 20 | random | 0.001 | 0.0 | 0.984 | 0.991 |
2 | Download | Download | predict | 10000 | 1 | 2 | 0.000 | 0.0 | 0.000 | 0.0 | 20 | random | 0.000 | 0.0 | 1.279 | 1.422 |
4 | Download | Download | predict | 10000 | 1000 | 2 | 0.001 | 0.0 | 0.020 | 0.0 | 20 | k-means++ | 0.001 | 0.0 | 0.975 | 0.984 |
5 | Download | Download | predict | 10000 | 1 | 2 | 0.000 | 0.0 | 0.000 | 0.0 | 20 | k-means++ | 0.000 | 0.0 | 1.344 | 1.502 |
7 | Download | Download | predict | 10000 | 1000 | 100 | 0.002 | 0.0 | 0.487 | 0.0 | 20 | random | 0.001 | 0.0 | 1.197 | 1.204 |
8 | Download | Download | predict | 10000 | 1 | 100 | 0.000 | 0.0 | 0.003 | 0.0 | 20 | random | 0.000 | 0.0 | 1.114 | 1.210 |
10 | Download | Download | predict | 10000 | 1000 | 100 | 0.002 | 0.0 | 0.489 | 0.0 | 20 | k-means++ | 0.001 | 0.0 | 1.214 | 1.222 |
11 | Download | Download | predict | 10000 | 1 | 100 | 0.000 | 0.0 | 0.003 | 0.0 | 20 | k-means++ | 0.000 | 0.0 | 1.166 | 1.282 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: penalty=l2
, dual=False
, tol=0.0001
, C=1.0
, fit_intercept=True
, intercept_scaling=1.0
, class_weight=nan
, random_state=nan
, solver=lbfgs
, max_iter=100
, multi_class=auto
, verbose=0
, warm_start=False
, n_jobs=nan
, l1_ratio=nan
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000000 | 1000000 | 100 | 11.674 | 0.118 | 0.069 | 0.000 | [20] | 1.957 | 0.016 | 5.966 | 5.967 |
3 | Download | Download | fit | 1000 | 1000 | 10000 | 0.808 | 0.052 | 0.099 | 0.001 | [27] | 0.753 | 0.061 | 1.074 | 1.077 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 1000000 | 1000 | 100 | 0.000 | 0.0 | 2.525 | 0.0 | [20] | 0.000 | 0.0 | 0.694 | 0.739 |
2 | Download | Download | predict | 1000000 | 1 | 100 | 0.000 | 0.0 | 0.011 | 0.0 | [20] | 0.000 | 0.0 | 0.290 | 0.321 |
4 | Download | Download | predict | 1000 | 100 | 10000 | 0.002 | 0.0 | 4.408 | 0.0 | [27] | 0.003 | 0.0 | 0.529 | 0.532 |
5 | Download | Download | predict | 1000 | 1 | 10000 | 0.000 | 0.0 | 0.820 | 0.0 | [27] | 0.001 | 0.0 | 0.114 | 0.116 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters:
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | copy_X | fit_intercept | normalize | positive | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000 | 1000 | 10000 | 1.545 | 0.027 | 0.052 | 0.002 | True | True | deprecated | False | 1.627 | 0.011 | 0.949 | 0.949 |
3 | Download | Download | fit | 1000000 | 1000000 | 100 | 8.330 | 0.079 | 0.096 | 0.000 | True | True | deprecated | False | 0.218 | 0.015 | 38.151 | 38.245 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | copy_X | fit_intercept | normalize | positive | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 1000 | 1000 | 10000 | 0.011 | 0.001 | 7.563 | 0.0 | True | True | deprecated | False | 0.017 | 0.0 | 0.612 | 0.612 |
2 | Download | Download | predict | 1000 | 10 | 10000 | 0.000 | 0.000 | 4.524 | 0.0 | True | True | deprecated | False | 0.000 | 0.0 | 0.503 | 0.529 |
4 | Download | Download | predict | 1000000 | 1000 | 100 | 0.000 | 0.000 | 4.712 | 0.0 | True | True | deprecated | False | 0.001 | 0.0 | 0.321 | 0.333 |
5 | Download | Download | predict | 1000000 | 10 | 100 | 0.000 | 0.000 | 0.109 | 0.0 | True | True | deprecated | False | 0.000 | 0.0 | 0.372 | 0.408 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: alpha=1e-06
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000 | 1000 | 10000 | 0.186 | 0.002 | 0.430 | 0.0 | 0.201 | 0.002 | 0.924 | 0.924 |
3 | Download | Download | fit | 1000000 | 1000000 | 100 | 1.302 | 0.011 | 0.615 | 0.0 | 0.245 | 0.001 | 5.308 | 5.308 |
predict
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Download | Download | predict | 1000 | 1000 | 10000 | 0.01 | 0.0 | 7.779 | 0.0 | 0.017 | 0.0 | 0.598 | 0.598 |
2 | Download | Download | predict | 1000 | 10 | 10000 | 0.00 | 0.0 | 5.162 | 0.0 | 0.000 | 0.0 | 0.428 | 0.451 |
4 | Download | Download | predict | 1000000 | 1000 | 100 | 0.00 | 0.0 | 5.070 | 0.0 | 0.000 | 0.0 | 0.436 | 0.471 |
5 | Download | Download | predict | 1000000 | 10 | 100 | 0.00 | 0.0 | 0.098 | 0.0 | 0.000 | 0.0 | 0.410 | 0.450 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters:
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | n_iter | angle | early_exaggeration | init | learning_rate | method | metric | min_grad_norm | n_components | n_iter_without_progress | perplexity | square_distances | verbose | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 1000 | 1000 | 3 | 4.374 | 0.41 | 0.0 | 0.004 | 1000 | 0.5 | 12.0 | warn | warn | barnes_hut | euclidean | 0.0 | 2 | 300 | 30.0 | legacy | 0 | 4.353 | 0.403 | 1.005 | 1.009 |
Profiling traces can be visualized using Perfetto UI.
scikit-learn-intelex (2021.20220207.123530) vs. scikit-learn (1.0.2)
All estimators share the following parameters: n_components=10
.
fit
sklearn_profiling | sklearnex_profiling | function | n_samples_train | n_samples | n_features | mean_duration_sklearn | std_duration_sklearn | iteration_throughput | latency | mean_duration_sklearnex | std_duration_sklearnex | speedup | std_speedup | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Download | Download | fit | 100000 | 100000 | 100 | 0.484 | 0.006 | 0.165 | 0.0 | 0.029 | 0.001 | 16.573 | 16.576 |
1 | Download | Download | fit | 10000 | 10000 | 1000 | 0.409 | 0.004 | 0.196 | 0.0 | 0.218 | 0.005 | 1.879 | 1.879 |
Profiling traces can be visualized using Perfetto UI.
python | 3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0] |
---|---|
executable | /usr/share/miniconda/envs/sklbench/bin/python |
machine | Linux-5.11.0-1028-azure-x86_64-with-glibc2.10 |
pip | 22.0.4 |
---|---|
setuptools | 60.10.0 |
sklearn | 1.0.2 |
numpy | 1.22.3 |
scipy | 1.8.0 |
Cython | None |
pandas | 1.4.1 |
matplotlib | 3.5.1 |
joblib | 1.1.0 |
threadpoolctl | 3.1.0 |
user_api | internal_api | prefix | filepath | version | threading_layer | architecture | num_threads | |
---|---|---|---|---|---|---|---|---|
0 | blas | openblas | libopenblas | /usr/share/miniconda/envs/sklbench/lib/libopenblasp-r0.3.18.so | 0.3.18 | pthreads | SkylakeX | 2 |
1 | openmp | openmp | libgomp | /usr/share/miniconda/envs/sklbench/lib/libgomp.so.1.0.0 | None | NaN | NaN | 2 |
cpu_count | 2 |
---|---|
physical_cpu_count | 2 |